Ultrafast transient sub-bandgap absorption of monolayer MoS2
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021-01-29
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
Light: Science and Applications, Volume 10, issue 1
Abstract
The light–matter interaction in materials is of remarkable interest for various photonic and optoelectronic applications, which is intrinsically determined by the bandgap of the materials involved. To extend the applications beyond the bandgap limit, it is of great significance to study the light–matter interaction below the material bandgap. Here, we report the ultrafast transient absorption of monolayer molybdenum disulfide in its sub-bandgap region from ~0.86 µm to 1.4 µm. Even though this spectral range is below the bandgap, we observe a significant absorbance enhancement up to ~4.2% in the monolayer molybdenum disulfide (comparable to its absorption within the bandgap region) due to pump-induced absorption by the excited carrier states. The different rise times of the transient absorption at different wavelengths indicate the various contributions of the different carrier states (i.e., real carrier states in the short-wavelength region of ~<1 µm, and exciton states in the long wavelength region of ~>1 µm). Our results elucidate the fundamental understanding regarding the optical properties, excited carrier states, and carrier dynamics in the technologically important near-infrared region, which potentially leads to various photonic and optoelectronic applications (e.g., excited-state-based photodetectors and modulators) of two-dimensional materials and their heterostructures beyond their intrinsic bandgap limitations.Description
| openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP
Keywords
Other note
Citation
Das, S, Wang, Y, Dai, Y, Li, S & Sun, Z 2021, ' Ultrafast transient sub-bandgap absorption of monolayer MoS 2 ', Light-Science & Applications, vol. 10, no. 1, 27 . https://doi.org/10.1038/s41377-021-00462-4