On-Site Wireless Power Generation
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
View publication in the Research portal
View/Open full text file from the Research portal
Date
2018-08
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
286-288
286-288
Series
IEEE Transactions on Antennas and Propagation
Abstract
Conventional wireless power transfer systems consist of a microwave power generator and a microwave power receiver separated by some distance. To realize efficient power transfer, the system is typically brought to resonance, and the coupled-antenna mode is optimized to reduce radiation into the surrounding space. In this scheme, any modification of the receiver position or of its electromagnetic properties results in the necessity of dynamically tuning the whole system to restore the resonant matching condition. It implies poor robustness to the receiver location and load impedance, as well as additional energy consumption in the control network. In this study, we introduce a new paradigm for wireless power delivery based on which the whole system, including transmitter and receiver and the space in between, forms a unified microwave power generator. In our proposed scenario the load itself becomes part of the generator. Microwave oscillations are created directly at the receiver location, eliminating the need for dynamical tuning of the system within the range of the self-oscillation regime. The proposed concept has relevant connections with the recent interest in parity-time symmetric systems, in which balanced loss and gain distributions enable unusual electromagnetic responses.Description
| openaire: EC/H2020/736876/EU//VISORSURF
Keywords
Wireless power transfer, parity-time symmetry reflection, resonance, transmission
Other note
Citation
Ra’di, Y, Chowkwale, B, Valagiannopoulos, C A, Liu, F, Alù, A, Simovski, C R & Tretyakov, S A 2018, ' On-Site Wireless Power Generation ', IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4260-4268 . https://doi.org/10.1109/TAP.2018.2835560