Bi-level fuzzy stochastic-robust model for flexibility valorizing of renewable networked microgrids

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNorouzi, Mohammadalien_US
dc.contributor.authorAghaei, Jamshiden_US
dc.contributor.authorNiknam, Taheren_US
dc.contributor.authorPirouzi, Sasanen_US
dc.contributor.authorLehtonen, Mattien_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorPower Systems and High Voltage Engineeringen
dc.contributor.organizationShiraz University of Technologyen_US
dc.contributor.organizationIslamic Azad Universityen_US
dc.date.accessioned2022-04-06T06:29:37Z
dc.date.available2022-04-06T06:29:37Z
dc.date.issued2022-09en_US
dc.descriptionPublisher Copyright: © 2022 The Author(s)
dc.description.abstractThis paper presents a new bi-level multi-objective model to valorize the microgrid (MG) flexibility based on flexible power management system. It considers the presence of renewable and flexibility resources including demand response program (DRP), energy storage system and integrated unit of electric spring with electric vehicles (EVs) parking (IUEE). The proposed bi-level model in the upper-level maximizes expected flexibility resources profit subject to flexibility constraints. Also, in the lower level, minimizing MG energy cost and voltage deviation function based on the Pareto optimization technique is considered as the objective functions; it is bounded by the linearized AC optimal power flow constraints, renewable and flexibility resources limits, and the MG flexibility restrictions. In the following, the proposed bi-level model using Karush–Kuhn–Tucker (KKT) technique is converted to a single-level counterpart, and the fuzzy decision-making method is employed to achieve the best compromise solution. Further, hybrid stochastic-robust programming models uncertain parameters of the proposed model, so that stochastic programming models uncertainties associated with demand, energy price, and the maximum renewables active generation. Also, to capture the flexible potential capabilities of the IUEE, robust optimization models the EVs’ parameters uncertainty. Finally, numerical results confirm the proposed model could jointly improve operation, economic and flexibility conditions of the MG and turned it to a flexi-optimized-renewable MG.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNorouzi, M, Aghaei, J, Niknam, T, Pirouzi, S & Lehtonen, M 2022, 'Bi-level fuzzy stochastic-robust model for flexibility valorizing of renewable networked microgrids', Sustainable Energy, Grids and Networks, vol. 31, 100684. https://doi.org/10.1016/j.segan.2022.100684en
dc.identifier.doi10.1016/j.segan.2022.100684en_US
dc.identifier.issn2352-4677
dc.identifier.otherPURE UUID: c3320d7a-0131-4bcc-a7bc-3d38e3aa1bd8en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c3320d7a-0131-4bcc-a7bc-3d38e3aa1bd8en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/81238255/1_s2.0_S2352467722000431_main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113889
dc.identifier.urnURN:NBN:fi:aalto-202204062765
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesSustainable Energy, Grids and Networksen
dc.relation.ispartofseriesVolume 31en
dc.rightsopenAccessen
dc.subject.keywordFlexibility valorizingen_US
dc.subject.keywordFuzzy decision-makingen_US
dc.subject.keywordHybrid stochastic-robust programmingen_US
dc.subject.keywordMicrogrid flexibilityen_US
dc.subject.keywordRenewable networked microgridsen_US
dc.titleBi-level fuzzy stochastic-robust model for flexibility valorizing of renewable networked microgridsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files