Toward Orientation Learning and Adaptation in Cartesian Space

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHuang, Yanlongen_US
dc.contributor.authorAbu-Dakka, Fares J.en_US
dc.contributor.authorSilvério, Joãoen_US
dc.contributor.authorCaldwell, Darwin G.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorIntelligent Roboticsen
dc.contributor.organizationUniversity of Leedsen_US
dc.contributor.organizationIDIAP Research Instituteen_US
dc.contributor.organizationIstituto Italiano di Tecnologiaen_US
dc.date.accessioned2020-08-21T08:28:32Z
dc.date.available2020-08-21T08:28:32Z
dc.date.issued2020en_US
dc.description.abstractAs a promising branch of robotics, imitation learning emerges as an important way to transfer human skills to robots, where human demonstrations represented in Cartesian or joint spaces are utilized to estimate task/skill models that can be subsequently generalized to new situations. While learning Cartesian positions suffices for many applications, the end-effector orientation is required in many others. Despite recent advances in learning orientations from demonstrations, several crucial issues have not been adequately addressed yet. For instance, how can demonstrated orientations be adapted to pass through arbitrary desired points that comprise orientations and angular velocities? In this article, we propose an approach that is capable of learning multiple orientation trajectories and adapting learned orientation skills to new situations (e.g., via-points and end-points), where both orientation and angular velocity are considered. Specifically, we introduce a kernelized treatment to alleviate explicit basis functions when learning orientations, which allows for learning orientation trajectories associated with high-dimensional inputs. In addition, we extend our approach to the learning of quaternions with angular acceleration or jerk constraints, which allows for generating smoother orientation profiles for robots. Several examples including experiments with real 7-DoF robot arms are provided to verify the effectiveness of our method.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHuang, Y, Abu-Dakka, F J, Silvério, J & Caldwell, D G 2020, ' Toward Orientation Learning and Adaptation in Cartesian Space ', IEEE Transactions on Robotics, vol. 37, no. 1, 9166547, pp. 82-98 . https://doi.org/10.1109/TRO.2020.3010633en
dc.identifier.doi10.1109/TRO.2020.3010633en_US
dc.identifier.issn1552-3098
dc.identifier.issn1941-0468
dc.identifier.otherPURE UUID: 092cf87a-0e14-4c93-ae21-27aa01755a25en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/092cf87a-0e14-4c93-ae21-27aa01755a25en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85100982583&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/51085485/Huang_Towards_orientation_learning_IEEETrRobo.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/45785
dc.identifier.urnURN:NBN:fi:aalto-202008214780
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Roboticsen
dc.relation.ispartofseriesVolume 37, issue 1, pp. 82-98en
dc.rightsopenAccessen
dc.subject.keywordQuaternionsen_US
dc.subject.keywordRobotsen_US
dc.subject.keywordTrajectoryen_US
dc.subject.keywordTask analysisen_US
dc.subject.keywordProbabilistic logicen_US
dc.subject.keywordAngular velocityen_US
dc.subject.keywordCollaborationen_US
dc.titleToward Orientation Learning and Adaptation in Cartesian Spaceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files