Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Kemppainen, E. | |
dc.contributor.author | Bodin, A. | |
dc.contributor.author | Sebok, B. | |
dc.contributor.author | Pedersen, T. | |
dc.contributor.author | Seger, B. | |
dc.contributor.author | Mei, B. | |
dc.contributor.author | Bae, D. | |
dc.contributor.author | Vesborg, P. C. K. | |
dc.contributor.author | Halme, J. | |
dc.contributor.author | Hansen, O. | |
dc.contributor.author | Lund, P. D. | |
dc.contributor.author | Chorkendorff, I. | |
dc.contributor.department | Teknillisen fysiikan laitos | fi |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.lab | New Energy Technologies (Renewable) | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.date.accessioned | 2016-07-18T09:01:14Z | |
dc.date.available | 2016-07-18T09:01:14Z | |
dc.date.issued | 2015 | |
dc.description.abstract | The recent surge in investigating electrocatalysts for the H2 evolution reaction is based on finding a cheap alternative to Pt. However platinum's excellent catalytic activity means very little catalyst needs to be used. The present study combines model experiments with numerical modeling to determine exactly how little catalyst is needed. Specifically we investigate ultra-low Pt loadings for use in photoelectrochemical H2 evolution using TiO2–Ti-pn+Si photocathodes. At a current density of 10 mA cm−2, we photocathodically evolve H2 at +465, +450, +350 and +270 mV vs., RHE at Pt loadings of 1000, 200, 50, and 10 ng cm−2 corresponding to HER overpotentials of η1000ng = 32 mV, η200ng = 46 mV, η50ng = 142 mV, and η10ng = 231 mV. To put this in perspective, if 30% of the world's current annual Pt production was used for H2 evolution catalysis, using a loading of 100 ng cm−2 and a current of 10 mA cm−2 would produce 1 TWaverage of H2. The photoelectrochemical data matched the modeling calculations implying that we were near the fundamental maximum in performance for our system. Furthermore modeling indicated that the overpotentials were dominated by mass transfer effects, rather than catalysis unless catalyst loadings were less than 1000 ng cm−2. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 2991-2999 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Kemppainen, E. & Bodin, A. & Sebok, B. & Pedersen, T. & Seger, B. & Mei, B. & Bae, D. & Vesborg, P. C. K. & Halme, J. & Hansen, O. & Lund, P. D. & Chorkendorff, I. 2015. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science. Volume 8, Issue 10. 2991-2999. ISSN 1754-5692 (printed). DOI: 10.1039/c5ee02188j. | en |
dc.identifier.doi | 10.1039/c5ee02188j | |
dc.identifier.issn | 1754-5692 (printed) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/21225 | |
dc.identifier.urn | URN:NBN:fi:aalto-201607062837 | |
dc.language.iso | en | en |
dc.publisher | Royal Society of Chemistry (RSC) | en |
dc.relation.ispartofseries | Energy & Environmental Science | en |
dc.relation.ispartofseries | Volume 8, Issue 10 | |
dc.rights | © 2015 Royal Society of Chemistry (RSC). This is the accepted version of the following article: Kemppainen, E. & Bodin, A. & Sebok, B. & Pedersen, T. & Seger, B. & Mei, B. & Bae, D. & Vesborg, P. C. K. & Halme, J. & Hansen, O. & Lund, P. D. & Chorkendorff, I. 2015. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science. Volume 8, Issue 10. 2991-2999. ISSN 1754-5692 (printed). DOI: 10.1039/c5ee02188j., which has been published in final form at http://pubs.rsc.org/en/Content/ArticleLanding/2015/EE/C5EE02188J#!divAbstract. This work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/) | en |
dc.rights.holder | Royal Society of Chemistry (RSC) | |
dc.subject.keyword | photoelectrochemistry | en |
dc.subject.keyword | hydrogen | en |
dc.subject.keyword | platinum | en |
dc.subject.keyword | nanoparticle | en |
dc.subject.keyword | catalyst | en |
dc.subject.keyword | modeling | en |
dc.subject.keyword | solar energy | en |
dc.subject.keyword | silicon | en |
dc.subject.other | Chemistry | en |
dc.subject.other | Energy | en |
dc.subject.other | Physics | en |
dc.title | Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.dcmitype | text | en |
dc.type.version | Final published version | en |
Files
Original bundle
1 - 1 of 1