Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKemppainen, E.
dc.contributor.authorBodin, A.
dc.contributor.authorSebok, B.
dc.contributor.authorPedersen, T.
dc.contributor.authorSeger, B.
dc.contributor.authorMei, B.
dc.contributor.authorBae, D.
dc.contributor.authorVesborg, P. C. K.
dc.contributor.authorHalme, J.
dc.contributor.authorHansen, O.
dc.contributor.authorLund, P. D.
dc.contributor.authorChorkendorff, I.
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labNew Energy Technologies (Renewable)en
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.date.accessioned2016-07-18T09:01:14Z
dc.date.available2016-07-18T09:01:14Z
dc.date.issued2015
dc.description.abstractThe recent surge in investigating electrocatalysts for the H2 evolution reaction is based on finding a cheap alternative to Pt. However platinum's excellent catalytic activity means very little catalyst needs to be used. The present study combines model experiments with numerical modeling to determine exactly how little catalyst is needed. Specifically we investigate ultra-low Pt loadings for use in photoelectrochemical H2 evolution using TiO2–Ti-pn+Si photocathodes. At a current density of 10 mA cm−2, we photocathodically evolve H2 at +465, +450, +350 and +270 mV vs., RHE at Pt loadings of 1000, 200, 50, and 10 ng cm−2 corresponding to HER overpotentials of η1000ng = 32 mV, η200ng = 46 mV, η50ng = 142 mV, and η10ng = 231 mV. To put this in perspective, if 30% of the world's current annual Pt production was used for H2 evolution catalysis, using a loading of 100 ng cm−2 and a current of 10 mA cm−2 would produce 1 TWaverage of H2. The photoelectrochemical data matched the modeling calculations implying that we were near the fundamental maximum in performance for our system. Furthermore modeling indicated that the overpotentials were dominated by mass transfer effects, rather than catalysis unless catalyst loadings were less than 1000 ng cm−2.en
dc.description.versionPeer revieweden
dc.format.extent2991-2999
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKemppainen, E. & Bodin, A. & Sebok, B. & Pedersen, T. & Seger, B. & Mei, B. & Bae, D. & Vesborg, P. C. K. & Halme, J. & Hansen, O. & Lund, P. D. & Chorkendorff, I. 2015. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science. Volume 8, Issue 10. 2991-2999. ISSN 1754-5692 (printed). DOI: 10.1039/c5ee02188j.en
dc.identifier.doi10.1039/c5ee02188j
dc.identifier.issn1754-5692 (printed)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/21225
dc.identifier.urnURN:NBN:fi:aalto-201607062837
dc.language.isoenen
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.ispartofseriesEnergy & Environmental Scienceen
dc.relation.ispartofseriesVolume 8, Issue 10
dc.rights© 2015 Royal Society of Chemistry (RSC). This is the accepted version of the following article: Kemppainen, E. & Bodin, A. & Sebok, B. & Pedersen, T. & Seger, B. & Mei, B. & Bae, D. & Vesborg, P. C. K. & Halme, J. & Hansen, O. & Lund, P. D. & Chorkendorff, I. 2015. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy & Environmental Science. Volume 8, Issue 10. 2991-2999. ISSN 1754-5692 (printed). DOI: 10.1039/c5ee02188j., which has been published in final form at http://pubs.rsc.org/en/Content/ArticleLanding/2015/EE/C5EE02188J#!divAbstract. This work is distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/)en
dc.rights.holderRoyal Society of Chemistry (RSC)
dc.subject.keywordphotoelectrochemistryen
dc.subject.keywordhydrogenen
dc.subject.keywordplatinumen
dc.subject.keywordnanoparticleen
dc.subject.keywordcatalysten
dc.subject.keywordmodelingen
dc.subject.keywordsolar energyen
dc.subject.keywordsiliconen
dc.subject.otherChemistryen
dc.subject.otherEnergyen
dc.subject.otherPhysicsen
dc.titleScalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalysten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.dcmitypetexten
dc.type.versionFinal published versionen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A1_kemppainen_e_2015.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format