DROPO: Sim-to-real transfer with offline domain randomization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTiboni, Gabrieleen_US
dc.contributor.authorArndt, Karolen_US
dc.contributor.authorKyrki, Villeen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorIntelligent Roboticsen
dc.contributor.organizationDepartment of Electrical Engineering and Automationen_US
dc.date.accessioned2023-06-14T08:51:31Z
dc.date.available2023-06-14T08:51:31Z
dc.date.issued2023-08en_US
dc.descriptionFunding Information: This work was supported by Academy of Finland grants 317020 and 328399 . We acknowledge the computational resources generously provided by CSC – IT Center for Science, Finland, and by the Aalto Science-IT project. Publisher Copyright: © 2023 The Author(s)
dc.description.abstractIn recent years, domain randomization over dynamics parameters has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies in robotic manipulation; however, finding optimal randomization distributions can be difficult. In this paper, we introduce DROPO, a novel method for estimating domain randomization distributions for safe sim-to-real transfer. Unlike prior work, DROPO only requires a limited, precollected offline dataset of trajectories, and explicitly models parameter uncertainty to match real data using a likelihood-based approach. We demonstrate that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a distribution capable of compensating for an unmodeled phenomenon. We also evaluate the method in two zero-shot sim-to-real transfer scenarios, showing successful domain transfer and improved performance over prior methods.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTiboni, G, Arndt, K & Kyrki, V 2023, ' DROPO: Sim-to-real transfer with offline domain randomization ', Robotics and Autonomous Systems, vol. 166, 104432 . https://doi.org/10.1016/j.robot.2023.104432en
dc.identifier.doi10.1016/j.robot.2023.104432en_US
dc.identifier.issn0921-8890
dc.identifier.otherPURE UUID: 607d09d3-16ec-4130-bd13-65ec37a2da86en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/607d09d3-16ec-4130-bd13-65ec37a2da86en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85160508715&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/113445706/1_s2.0_S0921889023000714_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/121448
dc.identifier.urnURN:NBN:fi:aalto-202306143825
dc.language.isoenen
dc.publisherElsevier Science
dc.relation.ispartofseriesRobotics and Autonomous Systemsen
dc.relation.ispartofseriesVolume 166en
dc.rightsopenAccessen
dc.subject.keywordDomain randomizationen_US
dc.subject.keywordReinforcement learningen_US
dc.subject.keywordRobot learningen_US
dc.subject.keywordTransfer learningen_US
dc.titleDROPO: Sim-to-real transfer with offline domain randomizationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files