Toward Computational Cumulative Biology by Combining Models of Biological Datasets

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2014
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-17
Series
PLOS ONE, Volume 9, issue 11
Abstract
A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations—for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database.
Description
Keywords
Other note
Citation
Faisal, A, Peltonen, J, Georgii, E, Rung, J & Kaski, S 2014, ' Toward Computational Cumulative Biology by Combining Models of Biological Datasets ', PloS one, vol. 9, no. 11, e113053, pp. 1-17 . https://doi.org/10.1371/journal.pone.0113053