Efficient Fully-Coupled Electro-Optical Simulation Framework for Large-Area Planar Device
No Thumbnail Available
Access rights
restrictedAccess
Journal Title
Journal ISSN
Volume Title
Conference article in proceedings
This publication is imported from Aalto University research portal.
View publication in the Research portal
Other link related to publication
View publication in the Research portal
Other link related to publication
Date
2019-07-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
2
9-10
9-10
Series
19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019
Abstract
Ongoing progress in optoelectronic devices necessitates computational tools that self-consistently account for both electronic charge carrier and photon dynamics and interactions. In this paper, we introduce an efficient simulation framework, using the concepts of nonlinear transmission lines, to study fully-coupled charge and photon transport in planar devices. Within the developed framework, the drift-diffusion equations for charge transport are self-consistently coupled with the radiative transfer equation for photon transport and a separate lateral transport model, to obtain a realistic picture of the electro-optical device behaviour. The model allows the detailed study of large-area devices with full access to the wavelength and angle dependent features. It also accounts for photon recycling, providing deeper insight into the complex nature of optical energy transfer and losses in planar multi-layer structures. The efficiency of the framework is illustrated by applying it to study intracavity diode structures, which are intended for exploring high-power electroluminescent cooling in III-V light-emitting diodes.Description
| openaire: EC/H2020/638173/EU//iTPX
Keywords
Other note
Citation
Sadi , T , Casado , A , Radevici , I , Kivisaari , P & Oksanen , J 2019 , Efficient Fully-Coupled Electro-Optical Simulation Framework for Large-Area Planar Device . in K Hinzer & J Piprek (eds) , 19th International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2019 . , 8806904 , IEEE , pp. 9-10 , International Conference on Numerical Simulation of Optoelectronic Devices , Ottawa , Canada , 08/07/2019 . https://doi.org/10.1109/NUSOD.2019.8806904