Updates in Bayesian Filtering by Continuous Projections on a Manifold of Densities

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTronarp, Filipen_US
dc.contributor.authorSarkka, Simoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.date.accessioned2019-08-15T08:20:37Z
dc.date.available2019-08-15T08:20:37Z
dc.date.issued2019-05-01en_US
dc.description.abstractIn this paper, we develop a novel method for approximate continuous-discrete Bayesian filtering. The projection filtering framework is exploited to develop accurate approximations of posterior distributions within parametric classes of probability distributions. This is done by formulating an ordinary differential equation for the posterior distribution that has the prior as initial value and hits the exact posterior after a unit of time. Particular emphasis is put on exponential families, especially the Gaussian family of densities. Experimental results demonstrate the efficacy and flexibility of the method.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTronarp, F & Sarkka, S 2019, Updates in Bayesian Filtering by Continuous Projections on a Manifold of Densities. in 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedings., 8682279, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2019-May, IEEE, pp. 5032-5036, IEEE International Conference on Acoustics, Speech, and Signal Processing, Brighton, United Kingdom, 12/05/2019. https://doi.org/10.1109/ICASSP.2019.8682279en
dc.identifier.doi10.1109/ICASSP.2019.8682279en_US
dc.identifier.isbn9781479981311
dc.identifier.issn1520-6149
dc.identifier.issn2379-190X
dc.identifier.otherPURE UUID: 15dcd854-77a0-49a5-a692-cbeba9106c6een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/15dcd854-77a0-49a5-a692-cbeba9106c6een_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/35790222/ELEC_Tronarp_Updates_in_Bayesian_ICASSP.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39623
dc.identifier.urnURN:NBN:fi:aalto-201908154668
dc.language.isoenen
dc.relation.fundinginfoFunding from Aalto ELEC Doctoral School and Academy of Finland (project 313708) is gratefully acknowledged.
dc.relation.ispartofIEEE International Conference on Acoustics, Speech, and Signal Processingen
dc.relation.ispartofseries44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedingsen
dc.relation.ispartofseriespp. 5032-5036en
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing ; Volume 2019-Mayen
dc.rightsopenAccessen
dc.subject.keywordBayesian state estimationen_US
dc.subject.keywordcontinuous-discrete filteringen_US
dc.subject.keywordnon-linear filteringen_US
dc.subject.keywordProjection filteringen_US
dc.titleUpdates in Bayesian Filtering by Continuous Projections on a Manifold of Densitiesen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files