On the Generalization of Equivariant Graph Neural Networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKarczewski, Rafał
dc.contributor.authorSouza, Amauri H.
dc.contributor.authorGarg, Vikas
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorProfessorship Garg Vikasen
dc.date.accessioned2024-09-25T06:05:31Z
dc.date.available2024-09-25T06:05:31Z
dc.date.issued2024
dc.descriptionPublisher Copyright: Copyright 2024 by the author(s)
dc.description.abstractE(n)-Equivariant Graph Neural Networks (EGNNs) are among the most widely used and successful models for representation learning on geometric graphs (e.g., 3D molecules). However, while the expressivity of EGNNs has been explored in terms of geometric variants of the Weisfeiler-Leman isomorphism test, characterizing their generalization capability remains open. In this work, we establish the first generalization bound for EGNNs. Our bound depicts a dependence on the weighted sum of logarithms of the spectral norms of the weight matrices (EGNN parameters). In addition, our main result reveals interesting novel insights: i) the spectral norms of the initial layers may impact generalization more than the final ones; ii) ε-normalization is beneficial to generalization ' confirming prior empirical evidence. We leverage these insights to introduce a spectral norm regularizer tailored to EGNNs. Experiments on real-world datasets substantiate our analysis, demonstrating a high correlation between theoretical and empirical generalization gaps and the effectiveness of the proposed regularization scheme.en
dc.description.versionPeer revieweden
dc.format.extent28
dc.format.mimetypeapplication/pdf
dc.identifier.citationKarczewski, R, Souza, A H & Garg, V 2024, ' On the Generalization of Equivariant Graph Neural Networks ', Proceedings of Machine Learning Research, vol. 235, pp. 23159-23186 . < https://proceedings.mlr.press/v235/karczewski24a.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: 579680b1-1be5-4f47-b052-8dda59cc13f2
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/579680b1-1be5-4f47-b052-8dda59cc13f2
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85203830679&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v235/karczewski24a.html
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/159372888/On_the_Generalization_of_Equivariant_Graph_Neural_Networks.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/130959
dc.identifier.urnURN:NBN:fi:aalto-202409256502
dc.language.isoenen
dc.publisherJMLR
dc.relation.ispartofseriesProceedings of Machine Learning Research
dc.relation.ispartofseriesVolume 235, pp. 23159-23186
dc.rightsopenAccessen
dc.titleOn the Generalization of Equivariant Graph Neural Networksen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files