Multifunctional 3D-Printed Patches for Long-Term Drug Release Therapies after Myocardial Infarction

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAjdary, Rubinaen_US
dc.contributor.authorEzazi, Nazanin Zanjanizadehen_US
dc.contributor.authorCorreia, Alexandraen_US
dc.contributor.authorKemell, Mariannaen_US
dc.contributor.authorHuan, Siqien_US
dc.contributor.authorRuskoaho, Heikki J.en_US
dc.contributor.authorHirvonen, Jounien_US
dc.contributor.authorSantos, Hélder A.en_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationUniversity of British Columbiaen_US
dc.date.accessioned2020-08-12T09:11:22Z
dc.date.available2020-08-12T09:11:22Z
dc.date.issued2020-08-01en_US
dc.description| openaire: EC/H2020/788489/EU//BioELCell
dc.description.abstractA biomaterial system incorporating nanocellulose, poly(glycerol sebacate), and polypyrrole is introduced for the treatment of myocardial infarction. Direct ink writing of the multicomponent aqueous suspensions allows multifunctional lattice structures that not only feature elasticity and electrical conductivity but enable cell growth. They are proposed as cardiac patches given their biocompatibility with H9c2 cardiomyoblasts, which attach extensively at the microstructural level, and induce their proliferation for 28 days. Two model drugs (3i-1000 and curcumin) are investigated for their integration in the patches, either by loading in the precursor suspension used for extrusion or by direct impregnation of the as-obtained, dry lattice. In studies of drug release conducted for five months, a slow in vitro degradation of the cardiac patches is observed, which prevents drug burst release and indicates their suitability for long-term therapy. The combination of biocompatibility, biodegradability, mechanical strength, flexibility, and electrical conductivity fulfills the requirement of the highly dynamic and functional electroresponsive cardiac tissue. Overall, the proposed cardiac patches are viable alternatives for the regeneration of myocardium after infarction through the effective integration of cardiac cells with the biomaterial.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAjdary, R, Ezazi, N Z, Correia, A, Kemell, M, Huan, S, Ruskoaho, H J, Hirvonen, J, Santos, H A & Rojas, O J 2020, ' Multifunctional 3D-Printed Patches for Long-Term Drug Release Therapies after Myocardial Infarction ', Advanced Functional Materials, vol. 30, no. 34, 2003440 . https://doi.org/10.1002/adfm.202003440en
dc.identifier.doi10.1002/adfm.202003440en_US
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.otherPURE UUID: 27c32f83-f6df-4b80-b706-2c0012361fb6en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/27c32f83-f6df-4b80-b706-2c0012361fb6en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85087203063&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53597516/adfm.202003440.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/45660
dc.identifier.urnURN:NBN:fi:aalto-202008124674
dc.language.isoenen
dc.publisherWILEY-VCH VERLAG
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCellen_US
dc.relation.ispartofseriesAdvanced Functional Materialsen
dc.rightsopenAccessen
dc.subject.keywordcardiac myoblastsen_US
dc.subject.keywordcardiac patchesen_US
dc.subject.keyworddirect ink writingen_US
dc.subject.keyworddrug releaseen_US
dc.subject.keywordnanocelluloseen_US
dc.titleMultifunctional 3D-Printed Patches for Long-Term Drug Release Therapies after Myocardial Infarctionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files