Fully analytic valence force field model for the elastic and inner elastic properties of diamond and zincblende crystals
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Physical Review B, Volume 100, issue 9
Abstract
Using a valence force field model based on that introduced by Martin, we present three related methods through which we analytically determine valence force field parameters. The methods introduced allow easy derivation of valence force field parameters in terms of the Kleinman parameter ζ and bulk properties of zincblende and diamond crystals. We start with a model suited for covalent and weakly ionic materials, where the valence force field parameters are derived in terms of ζ and the bulk elastic constants C11, C12, and C44. We show that this model breaks down as the material becomes more ionic and specifically when the elastic anisotropy factor A=2C44/(C11-C12)>2. The analytic model can be stabilized for ionic materials by including Martin's electrostatic terms with effective cation and anion charges in the valence force field model. Inclusion of effective charges determined via the optical phonon mode splitting provides a stable model for all but two of the materials considered (zincblende GaN and AlN). A stable model is obtained for all materials considered by also utilizing the inner elastic constant E11 to determine the magnitude of the effective charges used in the Coulomb interaction. Test calculations show that the models describe well structural relaxation in superlattices and alloys and reproduce key phonon band structure features.Description
Other note
Citation
Tanner, D S P, Caro, M A, Schulz, S & O'Reilly, E P 2019, 'Fully analytic valence force field model for the elastic and inner elastic properties of diamond and zincblende crystals', Physical Review B, vol. 100, no. 9, 094112. https://doi.org/10.1103/PhysRevB.100.094112