Vector-Valued Least-Squares Regression under Output Regularity Assumptions

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBrogat-Motte, Luc
dc.contributor.authorRudi, Alessandro
dc.contributor.authorBrouard, Céline
dc.contributor.authorRousu, Juho
dc.contributor.authord'Alché-Buc, Florence
dc.contributor.departmentTélécom Paris
dc.contributor.departmentINRIA
dc.contributor.departmentUniversité de Toulouse
dc.contributor.departmentComputer Science Professors
dc.contributor.departmentInstitut Polytechnique de Paris
dc.contributor.departmentDepartment of Computer Scienceen
dc.date.accessioned2022-12-14T10:17:37Z
dc.date.available2022-12-14T10:17:37Z
dc.date.issued2022
dc.description.abstractWe propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output. We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method. Our analysis extends the interest of reduced-rank regression beyond the standard low-rank setting to more general output regularity assumptions. We illustrate our theoretical insights on synthetic least-squares problems. Then, we propose a surrogate structured prediction method derived from this reduced-rank method. We assess its benefits on three different problems: image reconstruction, multi-label classification, and metabolite identification.en
dc.description.versionPeer revieweden
dc.format.extent50
dc.format.extent1-50
dc.format.mimetypeapplication/pdf
dc.identifier.citationBrogat-Motte , L , Rudi , A , Brouard , C , Rousu , J & d'Alché-Buc , F 2022 , ' Vector-Valued Least-Squares Regression under Output Regularity Assumptions ' , Journal of Machine Learning Research , vol. 23 , 344 , pp. 1-50 . < https://www.jmlr.org/papers/v23/21-1357.html >en
dc.identifier.issn1532-4435
dc.identifier.issn1533-7928
dc.identifier.otherPURE UUID: 8769c513-b5df-4bb5-80f8-801ae99b7b5f
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8769c513-b5df-4bb5-80f8-801ae99b7b5f
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85148103420&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://www.jmlr.org/papers/v23/21-1357.html
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94605912/Vector_Valued_Least_Squares_Regression_under_Output_Regularity_Assumptions.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118169
dc.identifier.urnURN:NBN:fi:aalto-202212146909
dc.language.isoenen
dc.publisherMICROTOME PUBL
dc.relation.ispartofseriesJournal of Machine Learning Researchen
dc.relation.ispartofseriesVolume 23en
dc.rightsopenAccessen
dc.titleVector-Valued Least-Squares Regression under Output Regularity Assumptionsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files