Vector-Valued Least-Squares Regression under Output Regularity Assumptions
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Brogat-Motte, Luc | |
dc.contributor.author | Rudi, Alessandro | |
dc.contributor.author | Brouard, Céline | |
dc.contributor.author | Rousu, Juho | |
dc.contributor.author | d'Alché-Buc, Florence | |
dc.contributor.department | Télécom Paris | |
dc.contributor.department | INRIA | |
dc.contributor.department | Université de Toulouse | |
dc.contributor.department | Computer Science Professors | |
dc.contributor.department | Institut Polytechnique de Paris | |
dc.contributor.department | Department of Computer Science | en |
dc.date.accessioned | 2022-12-14T10:17:37Z | |
dc.date.available | 2022-12-14T10:17:37Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output. We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method. Our analysis extends the interest of reduced-rank regression beyond the standard low-rank setting to more general output regularity assumptions. We illustrate our theoretical insights on synthetic least-squares problems. Then, we propose a surrogate structured prediction method derived from this reduced-rank method. We assess its benefits on three different problems: image reconstruction, multi-label classification, and metabolite identification. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 50 | |
dc.format.extent | 1-50 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Brogat-Motte , L , Rudi , A , Brouard , C , Rousu , J & d'Alché-Buc , F 2022 , ' Vector-Valued Least-Squares Regression under Output Regularity Assumptions ' , Journal of Machine Learning Research , vol. 23 , 344 , pp. 1-50 . < https://www.jmlr.org/papers/v23/21-1357.html > | en |
dc.identifier.issn | 1532-4435 | |
dc.identifier.issn | 1533-7928 | |
dc.identifier.other | PURE UUID: 8769c513-b5df-4bb5-80f8-801ae99b7b5f | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/8769c513-b5df-4bb5-80f8-801ae99b7b5f | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85148103420&partnerID=8YFLogxK | |
dc.identifier.other | PURE LINK: https://www.jmlr.org/papers/v23/21-1357.html | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/94605912/Vector_Valued_Least_Squares_Regression_under_Output_Regularity_Assumptions.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/118169 | |
dc.identifier.urn | URN:NBN:fi:aalto-202212146909 | |
dc.language.iso | en | en |
dc.publisher | MICROTOME PUBL | |
dc.relation.ispartofseries | Journal of Machine Learning Research | en |
dc.relation.ispartofseries | Volume 23 | en |
dc.rights | openAccess | en |
dc.title | Vector-Valued Least-Squares Regression under Output Regularity Assumptions | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |