Spreading and Epidemic Interventions - Effects of Network Structure and Dynamics

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorK. Rizi, Abbas
dc.contributor.departmentTietotekniikan laitosfi
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.labComplex Systems Groupen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorKivelä, Mikko, Assist. Prof., Aalto University, Department of Computer Science, Finland
dc.date.accessioned2024-03-04T10:00:16Z
dc.date.available2024-03-04T10:00:16Z
dc.date.defence2024-03-15
dc.date.issued2024
dc.description.abstractThe COVID-19 pandemic has highlighted the critical importance of understanding epidemic dynamics, particularly the significant gaps in our knowledge that need addressing to better prepare for future pandemics. This thesis delves into the intricacies of disease spread within complex human interaction networks, underlining the pivotal role of individual connectedness in influencing epidemic outcomes. By developing theoretical models inspired by real-world epidemiological data, this work provides a nuanced exploration of disease transmission dynamics across networked populations, emphasizing the heterogeneous, spatial, homophilic, and temporal characteristics inherent in human social structures. A primary focus of this research is the investigation of intervention strategies, encompassing pharmaceutical measures, such as vaccination campaigns, and non-pharmaceutical interventions, including contact tracing techniques. These interventions are evaluated within more realistic network topologies, characterized by degree heterogeneity and group structures, to assess their effectiveness in mitigating epidemic spread. The thesis leverages mathematical and computational epidemiology to offer profound insights into optimizing intervention strategies within the complex web of human interactions, thereby contributing to the academic discourse and providing actionable intelligence for public health policy formulation and epidemic preparedness. The avenues of research opened by this work offer deeper insights into the mechanisms of epidemic spread in social networks. By using stylized modeling, the study was able to delve into the nontrivial ways epidemics spread through social networks. This modeling approach simplified the realworld dynamics into more analytically tractable forms, allowing the researchers to capture the essence of contact network structures and their crucial role in transmitting infectious diseases. The primary objective of this study was to identify new pathways for academic exploration and offer valuable perspectives that can enhance public health policies and epidemic response strategies. Ultimately, this work seeks to contribute to a better understanding of epidemic dynamics by bridging knowledge gaps and fostering a more resilient response to public health challenges in the face of complex human interactions.en
dc.format.extent106 + app. 84
dc.identifier.isbn978-952-64-1705-9 (electronic)
dc.identifier.isbn978-952-64-1704-2 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/126837
dc.identifier.urnURN:ISBN:978-952-64-1705-9
dc.language.isoenen
dc.opnPerra, Nicola, Prof., Reader in Applied Mathematics, Queen Mary University of London, UK
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: T. Hiraoka, A. K. Rizi, J. Saramaki and M. Kivela. Herd immunity and epidemic size in networks with vaccination homophily. Physical Review E, 105(5) L052301, May 2020. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202208104604. DOI: 10.1103/PhysRevE.105.L052301
dc.relation.haspart[Publication 2]: T. Hiraoka, A. K. Rizi, Z. Ghadiri, J. Saramaki and M. Kivela. The strength and weakness of disease-induced herd immunity. Presented at NetSci 2023 Conference, pre-print: arXiv:2307.04700, Jul 2023.
dc.relation.haspart[Publication 3]: A. K. Rizi, L. A. Keating, J. P. Gleeson, David J.P. O’Sullivan and M. Kivela. Effectiveness of Contact Tracing on Networks with Cliques. Physical Review E, 109, 024303, Feb 2024.
dc.relation.haspart[Publication 4]: A. K. Rizi, A. Faqeeh, A. Badie-Modiri and M. Kivela. Epidemic spreading and digital contact tracing: Effects of heterogeneous mixing and quarantine failures. Physical Review E, 105(4) 044313, April 2022. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202205243384. DOI: 10.1103/PhysRevE.105.044313
dc.relation.haspart[Publication 5]: A. Badie-Modiri, A. K. Rizi, M. Karsai and M. Kivela. Directed percolation in random temporal network. Physical Review Research, 4(7) L022047, May 2022. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202208104716. DOI: 10.1103/PhysRevResearch.4.L022047
dc.relation.haspart[Publication 6]: A. Badie-Modiri, A. K. Rizi, M. Karsai and M. Kivela. Directed percolation in random temporal network models with heterogeneities. Physical Review E, 105(17) 054313, May 2022. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202208104570. DOI: 10.1103/PhysRevE.105.054313
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries48/2024
dc.revStegehuis, Clara, Prof., Associate Professor at Twente University, Netherlands
dc.revGallotti, Riccardo, Dr., Head of the Complex Human Behaviour, FBK, Italy
dc.subject.keywordcomplex systemsen
dc.subject.keywordnetwork scienceen
dc.subject.keywordspreading phenomenaen
dc.subject.keywordcomputational epidemiologyen
dc.subject.keyworddigital epidemiologyen
dc.subject.keywordcomplex networksen
dc.subject.keywordtemporal networksen
dc.subject.keywordreachabilityen
dc.subject.keywordphase transitionsen
dc.subject.keywordpercolationen
dc.subject.keywordCovid-19en
dc.subject.keywordvaccinationen
dc.subject.keywordcontact tracingen
dc.subject.otherComputer scienceen
dc.titleSpreading and Epidemic Interventions - Effects of Network Structure and Dynamicsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2024-03-15_0817
local.aalto.archiveyes
local.aalto.formfolder2024_03_04_klo_09_07
local.aalto.infraScience-IT

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526417059.pdf
Size:
4.92 MB
Format:
Adobe Portable Document Format