Versatile Assembly of Metal–Phenolic Network Foams Enabled by Tannin–Cellulose Nanofibers

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMattos, Bruno D.en_US
dc.contributor.authorZhu, Yaen_US
dc.contributor.authorTardy, Blaise L.en_US
dc.contributor.authorBeaumont, Marcoen_US
dc.contributor.authorRibeiro, Ana Carolina R.en_US
dc.contributor.authorMissio, André L.en_US
dc.contributor.authorOtoni, Caio G.en_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.contributor.organizationUniversidade Federal de Pelotasen_US
dc.contributor.organizationUniversidade Federal de São Carlosen_US
dc.contributor.organizationKhalifa University of Science and Technologyen_US
dc.contributor.organizationUniversity of Natural Resources and Life Sciences, Viennaen_US
dc.date.accessioned2023-03-07T13:29:31Z
dc.date.available2023-03-07T13:29:31Z
dc.date.issued2023-03-23en_US
dc.description| openaire: EC/H2020/788489/EU//BioELCell Funding Information: The authors acknowledge funding support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 788489, “BioElCell”); the Canada Excellence Research Chair Program (Grant No. CERC‐2018‐00006); the FAPERGS (Research Support Foundation of the State of RS), Process Number: 21/2551‐0000603‐0; the Canada Foundation for Innovation (Project No. 38623); and the São Paulo Research Foundation (FAPESP, Grant No. 2021/12071‐6). The authors also appreciate the support of the Academy of Finland Bioeconomy Flagship, FinnCERES Materials Cluster. Publisher Copyright: © 2023 Wiley-VCH GmbH.
dc.description.abstractMetal–phenolic network (MPN) foams are prepared using colloidal suspensions of tannin-containing cellulose nanofibers (CNFs) that are ice-templated and thawed in ethanolic media in the presence of metal nitrates. The MPN facilitates the formation of solid foams by air drying, given the strength and self-supporting nature of the obtained tannin–cellulose nanohybrid structures. The porous characteristics and (dry and wet) compression strength of the foams are rationalized by the development of secondary, cohesive metal-phenolic layers combined with a hydrogen bonding network involving the CNF. The shrinkage of the MPN foams is as low as 6% for samples prepared with 2.5–10% tannic acid (or condensed tannin at 2.5%) with respect to CNF content. The strength of the MPN foams reaches a maximum at 10% tannic acid (using Fe(III) ions), equivalent to a compressive strength 70% higher than that produced with tannin-free CNF foams. Overall, a straightforward framework is introduced to synthesize MPN foams whose physical and mechanical properties are tailored by the presence of tannins as well as the metal ion species that enable the metal–phenolic networking. Depending on the metal ion, the foams are amenable to modification according to the desired application.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMattos, B D, Zhu, Y, Tardy, B L, Beaumont, M, Ribeiro, A C R, Missio, A L, Otoni, C G & Rojas, O J 2023, ' Versatile Assembly of Metal–Phenolic Network Foams Enabled by Tannin–Cellulose Nanofibers ', Advanced Materials, vol. 35, no. 12, 2209685 . https://doi.org/10.1002/adma.202209685en
dc.identifier.doi10.1002/adma.202209685en_US
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.otherPURE UUID: 2a8a7a44-a4ab-4716-9e50-bc45eda2c943en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2a8a7a44-a4ab-4716-9e50-bc45eda2c943en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85148044764&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/115488477/CHEM_Mattos_et_al_Versatile_Assembly_2023_Advanced_Materials.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119991
dc.identifier.urnURN:NBN:fi:aalto-202303072319
dc.language.isoenen
dc.publisherWILEY-VCH VERLAG
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCell Funding Information: The authors acknowledge funding support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 788489, “BioElCell”); the Canada Excellence Research Chair Program (Grant No. CERC‐2018‐00006); the FAPERGS (Research Support Foundation of the State of RS), Process Number: 21/2551‐0000603‐0; the Canada Foundation for Innovation (Project No. 38623); and the São Paulo Research Foundation (FAPESP, Grant No. 2021/12071‐6). The authors also appreciate the support of the Academy of Finland Bioeconomy Flagship, FinnCERES Materials Cluster. Publisher Copyright: © 2023 Wiley-VCH GmbH.en_US
dc.relation.ispartofseriesAdvanced Materialsen
dc.relation.ispartofseriesarticlenumber 2209685en
dc.rightsopenAccessen
dc.subject.keywordcellulose nanofibersen_US
dc.subject.keywordin situ freeze–thawing–dryingen_US
dc.subject.keywordmetal–phenolic coordinationen_US
dc.subject.keywordsolid foamsen_US
dc.titleVersatile Assembly of Metal–Phenolic Network Foams Enabled by Tannin–Cellulose Nanofibersen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files