Representation transfer for differentially private drug sensitivity prediction
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-07-15
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
i218-i224
Series
Bioinformatics, Volume 35, issue 14
Abstract
Motivation: Human genomic datasets often contain sensitive information that limits use and sharing of the data. In particular, simple anonymization strategies fail to provide sufficient level of protection for genomic data, because the data are inherently identifiable. Differentially private machine learning can help by guaranteeing that the published results do not leak too much information about any individual data point. Recent research has reached promising results on differentially private drug sensitivity prediction using gene expression data. Differentially private learning with genomic data is challenging because it is more difficult to guarantee privacy in high dimensions. Dimensionality reduction can help, but if the dimension reduction mapping is learned from the data, then it needs to be differentially private too, which can carry a significant privacy cost. Furthermore, the selection of any hyperparameters (such as the target dimensionality) needs to also avoid leaking private information. Results: We study an approach that uses a large public dataset of similar type to learn a compact representation for differentially private learning. We compare three representation learning methods: variational autoencoders, principal component analysis and random projection. We solve two machine learning tasks on gene expression of cancer cell lines: cancer type classification, and drug sensitivity prediction. The experiments demonstrate significant benefit from all representation learning methods with variational autoencoders providing the most accurate predictions most often. Our results significantly improve over previous state-of-the-art in accuracy of differentially private drug sensitivity prediction.Description
Keywords
Other note
Citation
Niinimäki, T, Heikkilä, M A, Honkela, A & Kaski, S 2019, ' Representation transfer for differentially private drug sensitivity prediction ', Bioinformatics, vol. 35, no. 14, btz373, pp. i218-i224 . https://doi.org/10.1093/bioinformatics/btz373