Implementation and validation of pressure-dependent gas permeability model for bentonite in FEM code Thebes

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
Conference article
Date
2023-04-24
Major/Subject
Mcode
Degree programme
Language
en
Pages
6
Series
E3S Web of Conferences, Volume 382
Abstract
In an Engineered Barrier System of a nuclear waste repository, gas migrates through: a) diffusion/advection of dissolved gases, b) two-phase continuum flow, c) dilatant pathway flow and d) single-phase gas flow through macro-fractures in the soil. The gas production rate and the corresponding gas pressure accumulation affect the clay material behaviour and its properties such as air entry value. For the safe design of the EBS system, computational models need to account for the identified transport mechanisms. This study presents an enhancement in the finite element code Thebes [1, 2] that replicates the observed increase in permeability at higher gas pressures, e.g. due to pore dilatancy and gas fracture as proposed by Xu et al. [3]. The formulation links permeability to gas pressure and threshold/critical pressure. For model validation, the study utilizes a gas injection experiment carried out in IfG (Institute for Rock Mechanics, Germany) on Opalinus Clay [4]. The results show a good fit against the measurements while giving insight into gas flow through clays.
Description
Publisher Copyright: © The Authors, published by EDP Sciences, 2023.
Keywords
Citation
Gupta , A , Abed , A & Sołowski , W T 2023 , ' Implementation and validation of pressure-dependent gas permeability model for bentonite in FEM code Thebes ' , E3S Web of Conferences , vol. 382 , 02005 . https://doi.org/10.1051/e3sconf/202338202005