Advanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approach

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTalebjedi, B.en_US
dc.contributor.authorLaukkanen, T.en_US
dc.contributor.authorHolmberg, H.en_US
dc.contributor.authorVakkilainen, E.en_US
dc.contributor.authorSyri, S.en_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy efficiency and systemsen
dc.contributor.organizationLUT Universityen_US
dc.date.accessioned2022-08-10T08:24:56Z
dc.date.available2022-08-10T08:24:56Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2023-06-22en_US
dc.date.issued2022-09-03en_US
dc.description.abstractThermo-mechanical Pulping (TMP) is one of the most energy-intensive industries where most of the electrical energy is consumed in the refining process. This paper proposes the energy-saving refining optimization strategy by integrating the machine learning algorithm and heuristic optimization method. First, refining specific energy consumption (RSEC) and pulp quality identification models are developed using Artificial Neural Networks. In the second step, the developed identification models are incorporated with the Genetic algorithm to minimize the total refining specific energy consumption while maintaining the same pulp quality. Simulation results prove that a deep multilayer perceptron neural network is a powerful tool for creating refining energy and quality identification models with the model correlation coefficients of 0.97, 0.94, 0.92, and 0.67 for the first-stage RSEC, second-stage RSEC, final pulp fiber length, and freeness prediction, respectively. Findings confirm that the average total RSEC reduction of 14 % is achievable by utilizing the proposed optimization method.en
dc.description.versionPeer revieweden
dc.format.extent19
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTalebjedi, B, Laukkanen, T, Holmberg, H, Vakkilainen, E & Syri, S 2022, ' Advanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approach ', Nordic Pulp & Paper Research Journal, vol. 37, no. 3, pp. 434-452 . https://doi.org/10.1515/npprj-2022-0013en
dc.identifier.doi10.1515/npprj-2022-0013en_US
dc.identifier.issn0283-2631
dc.identifier.issn2000-0669
dc.identifier.otherPURE UUID: b6f26723-8865-488c-9c36-0f8049cdd679en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b6f26723-8865-488c-9c36-0f8049cdd679en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85136643926&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/87922455/10.1515_npprj_2022_0013.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/115896
dc.identifier.urnURN:NBN:fi:aalto-202208104718
dc.language.isoenen
dc.publisherAB SVENSK PAPPERSTIDNING
dc.relation.ispartofseriesNordic Pulp & Paper Research Journalen
dc.rightsopenAccessen
dc.subject.keywordartificial neural networken_US
dc.subject.keyworddata analysisen_US
dc.subject.keywordforest industryen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordrefining energy simulationen_US
dc.subject.keywordthermo-mechanical pulpingen_US
dc.subject.keywordMULTIPLE-REGRESSION ANALYSISen_US
dc.subject.keywordNEURAL-NETWORKSen_US
dc.subject.keywordREFINING PROCESSen_US
dc.subject.keywordPREDICTIONen_US
dc.subject.keywordQUALITYen_US
dc.subject.keywordMILLen_US
dc.titleAdvanced energy-saving optimization strategy in thermo-mechanical pulping by machine learning approachen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files