Integration of Continual Learning and Semantic Segmentation in a vision system for mobile robotics
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Sähkötekniikan korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2023-12-11
Department
Major/Subject
Space Robotics and Automation
Mcode
ELEC3047
Degree programme
Erasmus Mundus Space Master
Language
en
Pages
87 + 8
Series
Abstract
Over the last decade, the integration of robots into various applications has seen significant advancements fueled by Machine Learning (ML) algorithms, particularly in autonomous and independent operations. While robots have become increasingly proficient in various tasks, object instance recognition, a fundamental component of real-world robotic interactions, has witnessed remarkable improvements in accuracy and robustness. Nevertheless, most existing approaches heavily rely on prior information, limiting their adaptability in unfamiliar environments. To address this constraint, this thesis introduces the Segment and Learn Semantics (SaLS) framework, which combines video object segmentation with Continual Learning (CL) methods to enable semantic understanding in robotic applications. The research focuses on the potential application of SaLS in mobile robotics, with specific emphasis on the TORO robot developed at the Deutsches Zentrum für Luft- und Raumfahrt (DLR). Evaluation of the proposed method is conducted using a diverse dataset comprising various terrains and objects encountered by the TORO robot during its walking sessions. The results demonstrate the effectiveness of SaLS in classifying both known and previously unseen objects, achieving an average accuracy of 78.86% and 70.78% in the CL experiments. When running the whole method in the image sequences collected with TORO, the accuracy scores were of 75.54% and 84.75%, for known and unknown objects respectively. Notably, SaLS exhibited resilience against catastrophic forgetting, with only minor accuracy decreases observed in specific cases. Computational resource usage was also explored, indicating that the method is feasible for practical mobile robotic systems, with GPU memory usage being a potential limiting factor. In conclusion, the SaLS framework represents a significant step forward in enabling robots to autonomously understand and interact with their surroundings. This research contributes to the ongoing development of robotic systems that can operate effectively in unstructured environments, paving the way for more versatile and capable autonomous robots.Description
Supervisor
Marttinen, PekkaThesis advisor
Lee, JongseokKeywords
continual learning, mobile robotics, computer vision, progressive neural networks, machine learning, semantic segmentation