Interfacing modular multilevel converters for grid integration of renewable energy sources

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShahnazian, Fatemehen_US
dc.contributor.authorAdabi, Jafaren_US
dc.contributor.authorPouresmaeil, Edrisen_US
dc.contributor.authorCatalão, João P.S.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorRenewable Energies for Power Systemsen
dc.contributor.organizationBabol Noshirvani University of Technologyen_US
dc.contributor.organizationUniversity of Lisbonen_US
dc.date.accessioned2018-11-02T08:44:29Z
dc.date.available2018-11-02T08:44:29Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2020-04-06en_US
dc.date.issued2018-07-31en_US
dc.description.abstractThis paper presents a control method for modular multilevel converters (MMCs) as an interface between renewable energy sources and the grid. With growing penetration of renewable energy sources in the power grid, the developments in converter technologies and controller designs become more prominent. In this regard, dynamic and steady state analysis of the proposed model for an MMC use in a renewable energy based power system are provided through dc, 1st, and 2nd harmonic models of the converter in dq reference frame. This detailed configuration is then used to accomplish converter modulation and controller design. The first novel contribution of this control method is to provide an accurate pulse width modulation (PWM) strategy based on network and converter parameters, in order to achieve a stable operation for the interfaced MMC during connection of renewable energy sources into the power grid. In addition, the proposed method is able to mitigate the converter circulating current by inserting a second harmonic reference in the modulation process of the MMC, which is the second contribution this paper provides over other control techniques. A capacitor voltage balancing algorithm is also included in this control method to adjust each sub-module (SM) voltage within an acceptable range. Finally, converter’s maximum stable operation range is determined based on the dynamic equations of the proposed model. The functionality of the proposed control method is demonstrated by detailed mathematical analysis and comprehensive simulations with MATLAB/Simulink.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationShahnazian, F, Adabi, J, Pouresmaeil, E & Catalão, J P S 2018, 'Interfacing modular multilevel converters for grid integration of renewable energy sources', Electric Power Systems Research, vol. 160, pp. 439-449. https://doi.org/10.1016/j.epsr.2018.03.014en
dc.identifier.doi10.1016/j.epsr.2018.03.014en_US
dc.identifier.issn0378-7796
dc.identifier.issn1873-2046
dc.identifier.otherPURE UUID: 7d843b1a-e8fb-41bf-aec9-8158fda9d843en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/7d843b1a-e8fb-41bf-aec9-8158fda9d843en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/29082685/ELEC_Shahnazian_etal_Interfacing_Modular_Multilevel_ElPowSysRes_160_439_2018.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/34527
dc.identifier.urnURN:NBN:fi:aalto-201811025580
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesElectric Power Systems Researchen
dc.relation.ispartofseriesVolume 160, pp. 439-449en
dc.rightsopenAccessen
dc.subject.keywordcapacotor voltage balancingen_US
dc.subject.keywordcirculating current controlen_US
dc.subject.keywordmodular multilevel converteren_US
dc.subject.keywordMMCen_US
dc.subject.keywordpower system dynamicsen_US
dc.subject.keywordrenewable energy sourcesen_US
dc.titleInterfacing modular multilevel converters for grid integration of renewable energy sourcesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files