Detecting Anomalies in Migrated Data for Enterprise Resource Planning Implementation

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

School of Business | Master's thesis

Date

2019

Major/Subject

Mcode

Degree programme

Information and Service Management (ISM)

Language

en

Pages

89+3

Series

Description

Thesis advisor

Malo, Pekka
Kuosmanen, Timo

Keywords

ERP system, ERP implementation, data mining, anomaly detection, data migration, data quality

Other note

Citation