Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAarva, Anjaen_US
dc.contributor.authorDeringer, Volker L.en_US
dc.contributor.authorSainio, Samien_US
dc.contributor.authorLaurila, Tomien_US
dc.contributor.authorCaro, Miguel A.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMicrosystems Technologyen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.organizationUniversity of Cambridgeen_US
dc.contributor.organizationSLAC National Accelerator Laboratoryen_US
dc.date.accessioned2020-01-02T14:10:46Z
dc.date.available2020-01-02T14:10:46Z
dc.date.issued2019-11-26en_US
dc.description.abstractCarbonaceous materials, especially tetrahedral amorphous carbon (ta-C), can form complex functionalized surface structures and are thus promising candidates for applications in biomedical devices and electrochemistry. Functional groups at ta-C surfaces have been widely studied by spectroscopic techniques; however, interpretation of the experimental data is extremely difficult, especially in the case of X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The assignments of experimental XPS and XAS signals are normally based on references obtained from molecular or crystalline samples, which are simplified approximations for the far more complex amorphous structures. Here, we use extensive density functional theory (DFT) simulations to predict XAS and XPS signatures for carbon-based materials in more realistic environments, building on large data sets of structural models generated by a machine-learning (ML) interatomic potential. The results indicate clear signatures: individual fingerprint XAS spectra and distinctive XPS binding energy distributions, both in terms of center and broadness of the signal, for chemically different groups. The results point out what kind of structural information can and cannot be extracted with X-ray spectroscopy. This study will enable a deeper physicochemical understanding of experimental data and ultimately theory-based identification and quantification of functional groups in carbonaceous materials.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAarva, A, Deringer, V L, Sainio, S, Laurila, T & Caro, M A 2019, 'Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I : Fingerprint Spectra', Chemistry of Materials, vol. 31, no. 22, pp. 9243-9255. https://doi.org/10.1021/acs.chemmater.9b02049en
dc.identifier.doi10.1021/acs.chemmater.9b02049en_US
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.otherPURE UUID: d9e3e79a-73ec-4672-b2fd-ff721519d1a2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d9e3e79a-73ec-4672-b2fd-ff721519d1a2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85075131362&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/39383569/ELEC_Aarva_etal_Understanding_X_Ray_Spectroscopy_Part1_ChemMat_31_9243_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42250
dc.identifier.urnURN:NBN:fi:aalto-202001021361
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesChemistry of Materialsen
dc.relation.ispartofseriesVolume 31, issue 22, pp. 9243-9255en
dc.rightsopenAccessen
dc.titleUnderstanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectraen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files