Privacy-Preserving Cloud-Assisted Services

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLiu, Jian
dc.contributor.departmentTietotekniikan laitosfi
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.labSecure Systemsen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorAsokan, N., Prof., Aalto University, Department of Computer Science, Finland
dc.date.accessioned2018-06-06T09:02:48Z
dc.date.available2018-06-06T09:02:48Z
dc.date.defence2018-06-18
dc.date.issued2018
dc.description.abstractIn the last decade, there has been a move towards making traditional IT services follow a cloud-assisted services paradigm. This has triggered previously local services to be moved to a cloud-assisted setting to reap the advantages of the cloud-assisted paradigm that can work with simple client-side functionality ("thin clients"). Examples of such services are cloud storage, cloud-assistedmalware checking and "machine learning as a service" (MLaas).  Despite their benefits, these kinds of services put users' privacy at risk since the data stored in the cloud and/or the requests submitted to the cloud may contain sensitive information. On the other hand, unless carefully designed, this service paradigm may nonetheless fail to protect the confidentiality of service providers' business assets (e.g., malware databases or machine learning models) against malicioususers.  This dissertation shows how to leverage cryptographic technologies and trusted execution environments to design cloud-assisted services such that end users can protect their privacy, and if needed, service providers can ensure that their security/privacy requirements are not violated. We provide a general definition for privacy-preserving cloud-assisted services, investigate the privacy issues in three cloud-assisted services: lookup service, prediction service and storage service, and propose solutions on how to make them privacy-preserving.en
dc.format.extent62 + app. 88
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-8044-4 (electronic)
dc.identifier.isbn978-952-60-8043-7 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/31839
dc.identifier.urnURN:ISBN:978-952-60-8044-4
dc.language.isoenen
dc.opnYung, Moti, Prof., Columbia University and Snapchat, USA
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Àgnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, Benny Pinkas. Private Set Intersection for Unequal Set Sizes with Mobile Applications. In Proceedings of the 17th Privacy Enhancing Technologies SymposiumPETS), Minneapolis, USA, Pages 97-117, July 2017. Full-text in Aaltodoc/Acris: http://urn.fi/URN:NBN:fi:aalto-201711217590. DOI: 10.1515/popets-2017-0044
dc.relation.haspart[Publication 2]: Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, N. Asokan. The Circle Game: Scalable Private Membership Test Using Trusted Hardware. In Proceedings of the 11th ACM Asia Conferenceon Computer and Communications Security (ASIA CCS), Abu Dhabi, United Arab Emirates, Pages 31-44, April 2017. DOI: 10.1145/3052973.3053006
dc.relation.haspart[Publication 3]: Jian Liu, Mika Juuti, Yao Lu, N Asokan. Oblivious Neural Network Predictions via MiniONN Transformations. In Proceedings of the 24th ACM SIGSAC Conference on Computer and Communications Security (CCS), Dallas, Texas, USA, Pages 619-631, October 2017. DOI: 10.1145/3133956.3134056
dc.relation.haspart[Publication 4]: Jian Liu, N. Asokan, Benny Pinkas. Secure Deduplication of Encrypted Data without Additional Independent Servers. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS), Denver, Colorado, USA, Pages 874-885, October 2015. DOI: 10.1145/2810103.2813623
dc.relation.haspart[Publication 5]: Jian Liu, Li Duan, Yong Li, N. Asokan. Secure Deduplication of Encrypted Data: Refined Model and New Constructions. In Proceedings of Topics in Cryptology – CT-RSA 2018, San Francisco, California, USA, Pages 374-393, April 2018. DOI: 10.1007/978-3-319-76953-0_20
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries117/2018
dc.revCapkun, Srdjan, Prof., ETH Zurich, Switzerland
dc.revKatzenbeisser, Stefan, Prof., Technical University of Darmstadt, Germany
dc.subject.keywordprivate set intersectionen
dc.subject.keywordTEEsen
dc.subject.keywordmachine learningen
dc.subject.keywordneural networksen
dc.subject.keywordsecure two-party computationen
dc.subject.keywordcloud storageen
dc.subject.keyworddeduplicationen
dc.subject.otherComputer scienceen
dc.titlePrivacy-Preserving Cloud-Assisted Servicesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked
local.aalto.archiveyes
local.aalto.formfolder2018_06_05_klo_15_31

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526080444.pdf
Size:
879.21 KB
Format:
Adobe Portable Document Format
Description: