Techno-economic and safety assessment of supercritical CO2 extraction of essential oils and extracts

Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2023-08

Major/Subject

Mcode

Degree programme

Language

en

Pages

14

Series

Journal of CO2 Utilization, Volume 74

Abstract

Currently, products based on herbaceous plants are receiving global attention due to the significant rise in human awareness of environmental protection and well-being. These products contain compounds with valuable medicinal and nutritional effects. However, extracting these substances via conventional methods can be challenging concerning economic and environmental effects. Compared to conventional techniques, supercritical CO2 extraction is a clean technology that mitigates environmental issues and enhances extraction yields. This work focuses on developing a commercial-scale closed-cycle process using supercritical CO2 as a solvent with the possibility of varying feedstock material. The full process encompasses the raw material pre-treatment, the scCO2 extraction of compounds, and solvent recovery. This multiproduct processing unit includes three products: essential oil from garden angelica and extracts from roseroot and maral root. The process model was established using Aspen Plus®. Parallel to process design, safety was assessed by a hazard and operability study (HAZOP) to evaluate possible deviations during the operation. For assessing the feasibility of the process, a comprehensive techno-economic assessment was conducted. With this analysis, it can be seen that the designed production process is not only feasible but also economically profitable. For an annual production capacity of 13,240 kg, considering the three products, capital expenditure of 5.4 M€ was estimated. As to profitability, an internal rate of return of 40% and a payback time of 2.5 years resulted. In addition to economic benefits of the designed process, waste production was reduced by recycling used solvents and employing different approaches for mitigating greenhouse gas emissions.

Description

Funding Information: This research is part of the NovelBaltic Project (project number: 605102 ) which was supported by Interreg Baltic Sea Region (EU). Publisher Copyright: © 2023 The Authors

Keywords

Closed-cycle production, Herbaceous extracts, Multiproduct process plant, Supercritical CO extraction, Techno-economic analysis

Other note

Citation

Khalati, E, Oinas, P & Favén, L 2023, ' Techno-economic and safety assessment of supercritical CO 2 extraction of essential oils and extracts ', Journal of CO2 Utilization, vol. 74, 102547 . https://doi.org/10.1016/j.jcou.2023.102547