Automatic Generation of a Simulation-based Digital Twin of an Industrial Process Plant

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSantillán Martínez, Gerardoen_US
dc.contributor.authorSierla, Seppoen_US
dc.contributor.authorKarhela, Tommien_US
dc.contributor.authorVyatkin, Valeriyen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorInformation Technologies in Industrial Automationen
dc.date.accessioned2019-01-30T15:12:00Z
dc.date.available2019-01-30T15:12:00Z
dc.date.issued2018en_US
dc.description.abstractA Digital Twin (DT) of a production plant is a digital replica of the plant’s physical assets which contains the structure and the dynamics of how the devices and process operate. Simulation-based DTs (SBDTs) are those based on online first principle simulation models. In these systems, model parameter estimation techniques keep an online plant simulator in the same state as the targeted device or process. As a result, non-measured information of the current state of the plant can be obtained from the model. SBDTs can be used for a number of important applications and they have various advantages compared to DTs based on data-driven models. However, wider industrial adoption of SBDTs is hindered by laborious development of their underlying first principle simulation model as well as by a lack of integrated lifecycle-wide implementation methods and simulation architectures. This paper focuses on applying previously presented methods for reducing implementation effort of SBDTs. Firstly, laborious simulation model development is tackled by applying an automatic model generation method. Secondly, an integrated implementation methodology of a lifecycle-wide online simulation architecture is followed for developing the SBDT. The results show a higher level of fidelity compares to previous publications. A SBDT of a laboratory-scale process is implemented to demonstrate the proposed method.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSantillán Martínez, G, Sierla, S, Karhela, T & Vyatkin, V 2018, Automatic Generation of a Simulation-based Digital Twin of an Industrial Process Plant. in Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018. Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp. 3084-3089, Annual Conference of the IEEE Industrial Electronics Society, Washington, District of Columbia, United States, 21/10/2018. https://doi.org/10.1109/IECON.2018.8591464en
dc.identifier.doi10.1109/IECON.2018.8591464en_US
dc.identifier.isbn978-1-5090-6685-8
dc.identifier.isbn978-1-5090-6684-1
dc.identifier.issn1553-572X
dc.identifier.otherPURE UUID: f71ae0ff-db97-4cd5-a403-3d873ebfeaf1en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f71ae0ff-db97-4cd5-a403-3d873ebfeaf1en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/28181120/ELEC_Martinez_etal_Automatic_generation_of_simulation_IECON_2018.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/36321
dc.identifier.urnURN:NBN:fi:aalto-201901301491
dc.language.isoenen
dc.relation.ispartofAnnual Conference of the IEEE Industrial Electronics Societyen
dc.relation.ispartofseriesProceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018en
dc.relation.ispartofseriespp. 3084-3089en
dc.relation.ispartofseriesProceedings of the Annual Conference of the IEEE Industrial Electronics Societyen
dc.rightsopenAccessen
dc.subject.keywordditigal twinen_US
dc.subject.keyworddynamic process simulationen_US
dc.subject.keywordfirst principles modelen_US
dc.subject.keywordsimulation-based digital twinen_US
dc.titleAutomatic Generation of a Simulation-based Digital Twin of an Industrial Process Planten
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files