Nonlinear Switching State-Space Models

Loading...
Thumbnail Image

URL

Journal Title

Journal ISSN

Volume Title

Helsinki University of Technology | Diplomityö
Checking the digitized thesis and permission for publishing
Instructions for the author

Date

Mcode

Tik-61

Degree programme

Language

en

Pages

93

Series

Abstract

Epälineaarinen vaihtuva tila-avaruusmalli (vaihtuva NSSM) on kahden dynaamisen mallin yhdistelmä. Epälineaarinen tila-avaruusmalli (NSSM) on jatkuva ja kätketty Markov-malli (HMM) diskreetti. Vaihtuvassa mallissa NSSM mallittaa datan lyhyen aikavälin dynamiikkaa. HMM kuvaa pidempiaikaisia muutoksia ja ohjaa NSSM:a. Tässä työssä kehitetään vaihtuva NSSM ja oppimisalgoritmi sen parametreille. Oppimisalgoritmi perustuu bayesiläiseen ensemble-oppimiseen, jossa todellista posteriorijakaumaa approksimoidaan helpommin käsiteltävällä jakaumalla. Sovitus tehdään todennäköisyysmassan perusteella ylioppimisen välttämiseksi. Algoritmin toteutus perustuu TkT Harri Valpolan aiempaan NSSM-algoritmiin. Se käyttää monikerros-perception -verkkoja NSSM:n epälineaaristen kuvausten mallittamiseen. NSSM-algoritmin laskennallinen vaativuus rajoittaa vaihtuvan mallin rakennetta. Vain yhden dynaamisen mallin käyttö on mahdollista. Tällöin HMM:a käytetään vain NSSM:n ennustusvirheiden mallittamiseen. Tämä lähestymistapa on laskennallisesti kevyt mutta hyödyntää HMM:a vain vähän. Algoritmin toimivuutta kokeillaan todellisella puhedatalla. Vaihtuva NSSM osoittautuu paremmaksi datan mallittamisessa kuin muut yleiset mallit. Työssä näytetään myös, kuinka algoritmi pystyy järkevästi segmentoimaan puhetta erillisiksi foneemeiksi, kun ainoastaan foneemien oikea järjestys tunnetaan etukäteen.

Description

Supervisor

Karhunen, Juha

Thesis advisor

Valpola, Harri

Other note

Citation