A group learning curve model with motor, cognitive and waste elements
No Thumbnail Available
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Authors
Date
2020-08
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Computers & Industrial Engineering, Volume 146
Abstract
Nowadays, workers, individually or in groups, are continually learning new tasks. The speed at which they learn directly contributes to the success of their firms in competitive markets. Learning curve research has been either on the individual or organizational level. A few papers have developed learning curve models for a group of workers, even fewer that used empirical data for that purpose. However, none of the existing models comprises measurable elements from real industrial tasks. This paper aims to fill this gap in the literature by proposing a bivariate group learning curve model, an aggregation of three learning curves where the number of workers in a group and the number of repetitions are the independent variables. The dependent variable is the unit assembly time. The three learning curves represent motor, cognitive, and waste per unit assembled. The aggregated learning curve was fitted to experimental data consisting of different group sizes (1 to 4 students/workers), each performing four repetitions, and later compared to two log-linear learning curves, with and without plateauing. The results showed that the aggregated model represented the data the best and that segmenting waste into sub-elements (job familiarization, errors, and group coordination) improved the performance of the model. The parameter values affected by group sizes and repetitions for each task element provided insights that managers could use to improve the performance of their workforce.Description
Keywords
learning curves, group size, motor/cognitive/waste elements, experimental data
Other note
Citation
Peltokorpi, J & Jaber, M Y 2020, ' A group learning curve model with motor, cognitive and waste elements ', Computers & Industrial Engineering, vol. 146, 106621 . https://doi.org/10.1016/j.cie.2020.106621