Gaussian approximation potentials: Theory, software implementation and application examples

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKlawohn, Saschaen_US
dc.contributor.authorDarby, James P.en_US
dc.contributor.authorKermode, James R.en_US
dc.contributor.authorCsányi, Gáboren_US
dc.contributor.authorCaro, Miguel A.en_US
dc.contributor.authorBartók, Albert P.en_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorDAS Groupen
dc.contributor.organizationUniversity of Warwicken_US
dc.contributor.organizationUniversity of Cambridgeen_US
dc.date.accessioned2023-12-11T09:46:26Z
dc.date.available2023-12-11T09:46:26Z
dc.date.issued2023-11-07en_US
dc.descriptionFunding Information: This work was financially supported by the NOMAD Centre of Excellence (European Commission Grant Agreement No. 951786) and the Leverhulme Trust Research Project (Grant No. RPG-2017-191). A.P.B. acknowledges support from the CASTEP-USER project, funded by the Engineering and Physical Sciences Research Council under the Grant Agreement No. EP/W030438/1. M.A.C. acknowledges personal funding from the Academy of Finland under Grant No. 330488. We acknowledge computational resources provided by the Max Planck Computing and Data Facility provided through the NOMAD CoE, the Scientific Computing Research Technology Platform of the University of Warwick, the EPSRC-funded HPC Midlands + consortium (Grant No. EP/T022108/1), ARCHER2 ( https://www.archer2.ac.uk/ ) via the UK Car-Parinello consortium (Grant No. EP/P022065/1), CSC-IT Center for Science, and the Aalto University Science-IT project. We thank the technical staff at each of these HPC centres for their support. Publisher Copyright: © 2023 Author(s).
dc.description.abstractGaussian Approximation Potentials (GAPs) are a class of Machine Learned Interatomic Potentials routinely used to model materials and molecular systems on the atomic scale. The software implementation provides the means for both fitting models using ab initio data and using the resulting potentials in atomic simulations. Details of the GAP theory, algorithms and software are presented, together with detailed usage examples to help new and existing users. We review some recent developments to the GAP framework, including Message Passing Interface parallelisation of the fitting code enabling its use on thousands of central processing unit cores and compression of descriptors to eliminate the poor scaling with the number of different chemical elements.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKlawohn, S, Darby, J P, Kermode, J R, Csányi, G, Caro, M A & Bartók, A P 2023, ' Gaussian approximation potentials: Theory, software implementation and application examples ', Journal of Chemical Physics, vol. 159, no. 17, 174108 . https://doi.org/10.1063/5.0160898en
dc.identifier.doi10.1063/5.0160898en_US
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.otherPURE UUID: 9feb08f7-dd5c-46da-a305-6dae0f7bb704en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9feb08f7-dd5c-46da-a305-6dae0f7bb704en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85176225245&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/129933566/CHEM_Klawohn_et_al_Gaussian_approximation_2023_J_Chem_Phys.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124863
dc.identifier.urnURN:NBN:fi:aalto-202312117231
dc.language.isoenen
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Chemical Physicsen
dc.relation.ispartofseriesVolume 159, issue 17en
dc.rightsopenAccessen
dc.titleGaussian approximation potentials: Theory, software implementation and application examplesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files