Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Fay, A. | |
dc.contributor.author | Danneau, R. | |
dc.contributor.author | Viljas, J. K. | |
dc.contributor.author | Wu, F. | |
dc.contributor.author | Tomi, M. Y. | |
dc.contributor.author | Wengler, J. | |
dc.contributor.author | Wiesner, M. | |
dc.contributor.author | Hakonen, Pertti J. | |
dc.contributor.department | Teknillisen fysiikan laitos | fi |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.date.accessioned | 2015-09-04T10:15:12Z | |
dc.date.available | 2015-09-04T10:15:12Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1 V. The high bias electronic temperature has been calculated from shot-noise measurements, and it goes up to ∼1200 K at V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τe–op. In a 230-nm-long BLG sample of mobility μ=3600 cm exp 2 exp V−1 s exp −1, we find that τe–op decreases with increasing voltage and is close to the charged impurity scattering time τimp=60 fs at V=0.6 V. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 245427/1-7 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Fay, A. & Danneau, R. & Viljas, J. K. & Wu, F. & Tomi, M. Y. & Wengler, J. & Wiesner, M. & Hakonen, Pertti J. 2011. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Physical Review B. Volume 84, Issue 24. 245427/1-7. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.84.245427 | en |
dc.identifier.doi | 10.1103/physrevb.84.245427 | |
dc.identifier.issn | 1098-0121 (printed) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/17615 | |
dc.identifier.urn | URN:NBN:fi:aalto-201509034230 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society (APS) | en |
dc.relation.ispartofseries | Physical Review B | en |
dc.relation.ispartofseries | Volume 84, Issue 24 | |
dc.rights | © 2011 American Physical Society (APS). This is the accepted version of the following article: Fay, A. & Danneau, R. & Viljas, J. K. & Wu, F. & Tomi, M. Y. & Wengler, J. & Wiesner, M. & Hakonen, Pertti J. 2011. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Physical Review B. Volume 84, Issue 24. 245427/1-7. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.84.245427, which has been published in final form at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245427. | en |
dc.rights.holder | American Physical Society (APS) | |
dc.subject.keyword | field-effect transistors | en |
dc.subject.keyword | quantum transport | en |
dc.subject.keyword | carbon nanotubes | en |
dc.subject.keyword | chaotic cavities | en |
dc.subject.keyword | scattering | en |
dc.subject.keyword | devices | en |
dc.subject.keyword | states | en |
dc.subject.keyword | suppression | en |
dc.subject.other | Physics | en |
dc.title | Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.dcmitype | text | en |
dc.type.version | Final published version | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A1_fay_a_2011.pdf
- Size:
- 704.8 KB
- Format:
- Adobe Portable Document Format