Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling

Loading...
Thumbnail Image

Access rights

© 2011 American Physical Society (APS). This is the accepted version of the following article: Fay, A. & Danneau, R. & Viljas, J. K. & Wu, F. & Tomi, M. Y. & Wengler, J. & Wiesner, M. & Hakonen, Pertti J. 2011. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Physical Review B. Volume 84, Issue 24. 245427/1-7. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.84.245427, which has been published in final form at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245427.

URL

Journal Title

Journal ISSN

Volume Title

School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2011

Major/Subject

Mcode

Degree programme

Language

en

Pages

245427/1-7

Series

Physical Review B, Volume 84, Issue 24

Abstract

We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1 V. The high bias electronic temperature has been calculated from shot-noise measurements, and it goes up to ∼1200 K at V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τe–op. In a 230-nm-long BLG sample of mobility μ=3600 cm exp 2 exp V−1 s exp −1, we find that τe–op decreases with increasing voltage and is close to the charged impurity scattering time τimp=60 fs at V=0.6 V.

Description

Keywords

field-effect transistors, quantum transport, carbon nanotubes, chaotic cavities, scattering, devices, states, suppression

Other note

Citation

Fay, A. & Danneau, R. & Viljas, J. K. & Wu, F. & Tomi, M. Y. & Wengler, J. & Wiesner, M. & Hakonen, Pertti J. 2011. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling. Physical Review B. Volume 84, Issue 24. 245427/1-7. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.84.245427