Memory-Based Dual Gaussian Processes for Sequential Learning
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Chang, Paul E. | en_US |
dc.contributor.author | Verma, Prakhar | en_US |
dc.contributor.author | John, S.T. | en_US |
dc.contributor.author | Solin, Arno | en_US |
dc.contributor.author | Emtiyaz Khan, Mohammad | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Krause, Andread | en_US |
dc.contributor.editor | Brunskill, Emma | en_US |
dc.contributor.editor | Cho, Kyunghyun | en_US |
dc.contributor.editor | Engelhardt, Barbara | en_US |
dc.contributor.editor | Sabato, Sivan | en_US |
dc.contributor.editor | Scarlett, Jonathan | en_US |
dc.contributor.groupauthor | Professorship Solin A. | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.organization | RIKEN | en_US |
dc.date.accessioned | 2023-09-13T06:48:41Z | |
dc.date.available | 2023-09-13T06:48:41Z | |
dc.date.issued | 2023-07 | en_US |
dc.description.abstract | Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 20 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Chang, P E, Verma, P, John, S T, Solin, A & Emtiyaz Khan, M 2023, Memory-Based Dual Gaussian Processes for Sequential Learning. in A Krause, E Brunskill, K Cho, B Engelhardt, S Sabato & J Scarlett (eds), Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, JMLR, pp. 4035-4054, International Conference on Machine Learning, Honolulu, Hawaii, United States, 23/07/2023. < https://proceedings.mlr.press/v202/chang23a.html > | en |
dc.identifier.issn | 2640-3498 | |
dc.identifier.other | PURE UUID: c1741c38-c597-4f97-8341-cd81f6017ab5 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/c1741c38-c597-4f97-8341-cd81f6017ab5 | en_US |
dc.identifier.other | PURE LINK: https://proceedings.mlr.press/v202/chang23a.html | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/120698559/SCI_Chang_etal_ICML_2023.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/123501 | |
dc.identifier.urn | URN:NBN:fi:aalto-202309135861 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Conference on Machine Learning | en |
dc.relation.ispartofseries | Proceedings of the 40th International Conference on Machine Learning | en |
dc.relation.ispartofseries | pp. 4035-4054 | en |
dc.relation.ispartofseries | Proceedings of Machine Learning Research ; Volume 202 | en |
dc.rights | openAccess | en |
dc.title | Memory-Based Dual Gaussian Processes for Sequential Learning | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |