Memory-Based Dual Gaussian Processes for Sequential Learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorChang, Paul E.en_US
dc.contributor.authorVerma, Prakharen_US
dc.contributor.authorJohn, S.T.en_US
dc.contributor.authorSolin, Arnoen_US
dc.contributor.authorEmtiyaz Khan, Mohammaden_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorKrause, Andreaden_US
dc.contributor.editorBrunskill, Emmaen_US
dc.contributor.editorCho, Kyunghyunen_US
dc.contributor.editorEngelhardt, Barbaraen_US
dc.contributor.editorSabato, Sivanen_US
dc.contributor.editorScarlett, Jonathanen_US
dc.contributor.groupauthorProfessorship Solin A.en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.organizationRIKENen_US
dc.date.accessioned2023-09-13T06:48:41Z
dc.date.available2023-09-13T06:48:41Z
dc.date.issued2023-07en_US
dc.description.abstractSequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationChang, P E, Verma, P, John, S T, Solin, A & Emtiyaz Khan, M 2023, Memory-Based Dual Gaussian Processes for Sequential Learning. in A Krause, E Brunskill, K Cho, B Engelhardt, S Sabato & J Scarlett (eds), Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 202, JMLR, pp. 4035-4054, International Conference on Machine Learning, Honolulu, Hawaii, United States, 23/07/2023. < https://proceedings.mlr.press/v202/chang23a.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: c1741c38-c597-4f97-8341-cd81f6017ab5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c1741c38-c597-4f97-8341-cd81f6017ab5en_US
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v202/chang23a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/120698559/SCI_Chang_etal_ICML_2023.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/123501
dc.identifier.urnURN:NBN:fi:aalto-202309135861
dc.language.isoenen
dc.relation.ispartofInternational Conference on Machine Learningen
dc.relation.ispartofseriesProceedings of the 40th International Conference on Machine Learningen
dc.relation.ispartofseriespp. 4035-4054en
dc.relation.ispartofseriesProceedings of Machine Learning Research ; Volume 202en
dc.rightsopenAccessen
dc.titleMemory-Based Dual Gaussian Processes for Sequential Learningen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files