Unifying model of driven polymer translocation

Loading...
Thumbnail Image

Access rights

© 2012 American Physical Society (APS). http://www.aps.org
Final published version

URL

Journal Title

Journal ISSN

Volume Title

School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2012

Major/Subject

Mcode

Degree programme

Language

en

Pages

051803/1-7

Series

Physical Review E, Volume 85, Issue 5

Abstract

We present a Brownian dynamics model of driven polymer translocation, in which nonequilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective friction, we develop a finite chain length TP formalism, based on the idea suggested by Sakaue [Phys. Rev. E 76, 021803 (2007)]. We validate the model by numerical comparisons with high-accuracy molecular dynamics simulations, showing excellent agreement in a wide range of parameters. Our results show that the dynamics of driven translocation is dominated by the nonequilibrium TP along the cis side subchain. Furthermore, by solving the model for chain lengths up to 1010 monomers, we show that the chain lengths probed by experiments and simulations are typically orders of magnitude below the asymptotic limit. This explains both the considerable scatter in the observed scaling of translocation time with respect to chain length, and some of the shortcomings of present theories. Our study shows that for a quantitative theory of polymer translocation, explicit consideration of finite chain length effects is required.

Description

Keywords

macromolecules, polymers, biopolymers, theory and modeling, polymer translocation, Brownian dynamics model, soft matter

Other note

Citation

Ikonen, T. & Bhattacharya, A. & Ala-Nissilä Tapio & Sung, W.. 2012. Unifying model of driven polymer translocation. Physical Review E. Volume 85, Issue 5. P. 051803/1-7. ISSN 1539-3755 (printed). DOI: 10.1103/physreve.85.051803.