Predicting stock returns by number of company mentions in tweets
dc.contributor | Aalto University | en |
dc.contributor | Aalto-yliopisto | fi |
dc.contributor.advisor | Lof, Matthijs | |
dc.contributor.author | Päivärinta, Kimi | |
dc.contributor.department | Rahoituksen laitos | fi |
dc.contributor.school | Kauppakorkeakoulu | fi |
dc.contributor.school | School of Business | en |
dc.date.accessioned | 2018-03-28T12:45:32Z | |
dc.date.available | 2018-03-28T12:45:32Z | |
dc.date.issued | 2017 | |
dc.description.abstract | This study attempts to establish whether return or magnitude of return can be predicted by how many tweets mention a company by either its name or stock symbol. The sample data consists of 365 million tweets of which 706,700 mention a S&P 500 company between June 1st, 2016 and June 30th, 2017. It was found that tweets which mention a company by its stock symbol while stock markets are open have a positive impact on its return between 0 to 1%. No evidence was found of number of tweets holding a predictive value of the magnitude of return. | en |
dc.format.extent | 31 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/30431 | |
dc.identifier.urn | URN:NBN:fi:aalto-201803281898 | |
dc.language.iso | en | en |
dc.programme | Rahoitus | fi |
dc.subject.keyword | en | |
dc.subject.keyword | tweet | en |
dc.subject.keyword | predicting | en |
dc.subject.keyword | big data | en |
dc.title | Predicting stock returns by number of company mentions in tweets | en |
dc.type | G1 Kandidaatintyö | fi |
dc.type.ontasot | Bachelor's thesis | en |
dc.type.ontasot | Kandidaatintyö | fi |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- bachelor_Päivärinta_Kimi_2017.pdf
- Size:
- 824.63 KB
- Format:
- Adobe Portable Document Format