Mending Partial Solutions with Few Changes
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Melnyk, Darya | en_US |
dc.contributor.author | Suomela, Jukka | en_US |
dc.contributor.author | Villani, Neven | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Hillel, Eshcar | en_US |
dc.contributor.editor | Palmieri, Roberto | en_US |
dc.contributor.editor | Riviere, Etienne | en_US |
dc.contributor.groupauthor | Professorship Suomela J. | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Algorithms and Theoretical Computer Science (TCS) | en |
dc.contributor.groupauthor | Computer Science - Large-scale Computing and Data Analysis (LSCA) | en |
dc.date.accessioned | 2023-08-23T06:07:51Z | |
dc.date.available | 2023-08-23T06:07:51Z | |
dc.date.issued | 2023-02-01 | en_US |
dc.description | Funding Information: This work was supported in part by the Academy of Finland, Grant 333837. Publisher Copyright: © Darya Melnyk, Jukka Suomela, and Neven Villani. | |
dc.description.abstract | In this paper, we study the notion of mending: given a partial solution to a graph problem, how much effort is needed to take one step towards a proper solution? For example, if we have a partial coloring of a graph, how hard is it to properly color one more node? In prior work (SIROCCO 2022), this question was formalized and studied from the perspective of mending radius: if there is a hole that we need to patch, how far do we need to modify the solution? In this work, we investigate a complementary notion of mending volume: how many nodes need to be modified to patch a hole? We focus on the case of locally checkable labeling problems (LCLs) in trees, and show that already in this setting there are two infinite hierarchies of problems: for infinitely many values 0 < α ≤ 1, there is an LCL problem with mending volume Θ(nα), and for infinitely many values k ≥ 1, there is an LCL problem with mending volume Θ(logk n). Hence the mendability of LCL problems on trees is a much more fine-grained question than what one would expect based on the mending radius alone. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Melnyk, D, Suomela, J & Villani, N 2023, Mending Partial Solutions with Few Changes . in E Hillel, R Palmieri & E Riviere (eds), 26th International Conference on Principles of Distributed Systems, OPODIS 2022 ., 21, Leibniz International Proceedings in Informatics, LIPIcs, vol. 253, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Conference on Principles of Distributed Systems, Brussels, Belgium, 13/12/2022 . https://doi.org/10.4230/LIPIcs.OPODIS.2022.21 | en |
dc.identifier.doi | 10.4230/LIPIcs.OPODIS.2022.21 | en_US |
dc.identifier.isbn | 9783959772655 | |
dc.identifier.issn | 1868-8969 | |
dc.identifier.other | PURE UUID: 626f479a-760f-49ba-895e-020d2c09d902 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/626f479a-760f-49ba-895e-020d2c09d902 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85148613458&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/119072608/SCI_Melnyk_etal_OPODIS_2022.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/122642 | |
dc.identifier.urn | URN:NBN:fi:aalto-202308234988 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Conference on Principles of Distributed Systems | en |
dc.relation.ispartofseries | 26th International Conference on Principles of Distributed Systems, OPODIS 2022 | en |
dc.relation.ispartofseries | Leibniz International Proceedings in Informatics, LIPIcs | en |
dc.relation.ispartofseries | Volume 253 | en |
dc.rights | openAccess | en |
dc.subject.keyword | LCL problems | en_US |
dc.subject.keyword | mending | en_US |
dc.subject.keyword | volume model | en_US |
dc.title | Mending Partial Solutions with Few Changes | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |