Intelligent system for depression scale estimation with facial expressions and case study in industrial intelligence
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2022-12
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
18
Series
International Journal of Intelligent Systems, Volume 37, issue 12, pp. 10140-10156
Abstract
As a mental disorder, depression has affected people's lives, works, and so on. Researchers have proposed various industrial intelligent systems in the pattern recognition field for audiovisual depression detection. This paper presents an end‐to‐end trainable intelligent system to generate high‐level representations over the entire video clip. Specifically, a three‐dimensional (3D) convolutional neural network equipped with a module spatiotemporal feature aggregation module (STFAM) is trained from scratch on audio/visual emotion challenge (AVEC)2013 and AVEC2014 data, which can model the discriminative patterns closely related to depression. In the STFAM, channel and spatial attention mechanism and an aggregation method, namely 3D DEP‐NetVLAD, are integrated to learn the compact characteristic based on the feature maps. Extensive experiments on the two databases (i.e., AVEC2013 and AVEC2014) are illustrated that the proposed intelligent system can efficiently model the underlying depression patterns and obtain better performances over the most video‐based depression recognition approaches. Case studies are presented to describes the applicability of the proposed intelligent system for industrial intelligence.Description
Keywords
Other note
Citation
He, L, Guo, C, Tiwari, P, Pandey, H M & Dang, W 2022, ' Intelligent system for depression scale estimation with facial expressions and case study in industrial intelligence ', International Journal of Intelligent Systems, vol. 37, no. 12, pp. 10140-10156 . https://doi.org/10.1002/int.22426