Virtual biological activity profiles, biological descriptors, for use in data mining applications
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Helsinki University of Technology |
Diplomityö
Checking the digitized thesis and permission for publishing
Instructions for the author
Instructions for the author
Authors
Date
2008
Major/Subject
Laskennallinen tekniikka
Mcode
S-114
Degree programme
Language
en
Pages
91
Series
Abstract
Rationaalisen lääkesuunnittelun tavoitteena on löytää uusia, lupaavia lääkeaineiksi soveltuvia yhdisteitä, jotka sitoutuvat spesifisesti vain kohdemolekyyliinsä aiheuttamatta sivuvaikutuksia. Uudet pienoiskokoiset menetelmät mahdollistavat yhdisteiden nopean testaamisen, joten biologisissa ja kemiallisissa tietokannoissa on saatavilla yhä enemmän informaatiota. Yksi rationaalisen lääketieteen haasteista on hyödyntää kerättyä informaatiota ja rakentaa sen perusteella yhdisteiden sitoutumista ennustavia malleja. Yhdisteiden sitoutumista ennustavat mallit ovat perinteisesti perustuneet yhdisteiden kemiallisesta rakenteesta johdettuihin muuttujiin eli deskriptoreihin. Äskettäin on kuitenkin esitetty, että uusia lääkeaineita voitaisiin löytää tehokkaammin käyttämällä biologisia deskriptoreita, jotka kuvaavat lääkkeen biologista aktiivisuutta muita kohdemolekyylejä kohtaan. Tämän työn tavoitteena oli luoda sarja aktiivisuutta ennustavia malleja, jotka oli muodostettu kemiallisiin rakenteisiin perustuvien deskriptoreiden avulla. Mallintamisessa käytettiin monia menetelmiä ongelman ratkaisuun parhaiten sopivien löytämiseksi. Sen jälkeen aktiivisuusmallien sarjaa käytettiin virtuaalisen biologisen aktiivisuusprofiilin muodostamiseen kullekin lääkeaine-ehdokkaalle. Biologista aktiivisuusprofiilia käytettiin biologisena deskriptorina pohjana uusille malleille, jotka rikastivat kemiallisia tietokantoja eli järjestivät yhdisteet niiden ennustetun aktiivisuuden mukaan. Mallit perustuivat aktiivisuusprofiilien vertaamiseen tunnettujen aktiivisten yhdisteiden profiileihin. Kun menetelmää verrattiin vakiintuneeseen kemiallisiin rakenteisiin perustuvaan menetelmään, se löysi enemmän aktiivisia yhdisteitä. Tämän perusteella voidaan päätellä, että biologiseen aktiivisuuteen perustuvat muuttujat ovat hyvä vaihtoehto perinteisille rakenteeseen pohjautuville muuttujille.Description
Supervisor
Kaski, KimmoThesis advisor
Schmidt, FriedemannKeywords
rational drug design, lääkeainesuunnittelu, affinity fingerprints, affiniteettisormenjäljet, biological descriptor, biologinen deskriptori, QSAR modeling, QSAR mallinnus, random forest, päätösmetsä, dataset enrichment, kemiallisen kirjaston rikastaminen