Bayesian approach for validation of runaway electron simulations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.author, JET Contributorsen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy Conversionen
dc.date.accessioned2023-03-15T07:09:45Z
dc.date.available2023-03-15T07:09:45Z
dc.date.issued2022-12-01en_US
dc.description.abstractPlasma-terminating disruptions in future fusion reactors may result in conversion of the initial current to a relativistic runaway electron beam. Validated predictive tools are required to optimise the scenarios and mitigation actuators to avoid the excessive damage that can be caused by such events. Many of the simulation tools applied in fusion energy research require the user to specify input parameters that are not constrained by the available experimental information. The conventional approach, where an expert modeller calibrates these input parameters based on domain knowledge, is prone to lead to an intractable validation challenge without systematic uncertainty quantification. Bayesian inference algorithms offer a promising alternative approach that naturally includes uncertainty quantification and is less subject to user bias in choosing the input parameters. The main challenge in using these methods is the computational cost of simulating enough samples to construct the posterior distributions for the uncertain input parameters. This challenge can be overcome by combining probabilistic surrogate modelling, such as Gaussian process regression, with Bayesian optimisation, which can reduce the number of required simulations by several orders of magnitude. Here, we implement this type of Bayesian optimisation framework for a model for analysis of disruption runaway electrons, and explore for simulations of current quench in a JET plasma discharge with an argon induced disruption. We use this proof-of-principle framework to explore the optimum input parameters with uncertainties in optimisation tasks ranging from one to seven dimensions. The relevant Python codes that are used in the analysis are available via https://github.com/aejarvin/BO_FOR_RE_SIMULATIONS/.en
dc.description.versionPeer revieweden
dc.format.extent22
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJET Contributors 2022, ' Bayesian approach for validation of runaway electron simulations ', Journal of Plasma Physics, vol. 88, no. 6 . https://doi.org/10.1017/S0022377822001210en
dc.identifier.doi10.1017/S0022377822001210en_US
dc.identifier.issn0022-3778
dc.identifier.issn1469-7807
dc.identifier.otherPURE UUID: 835f5a0b-34ee-4485-a8cd-7c777434a52aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/835f5a0b-34ee-4485-a8cd-7c777434a52aen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/102502301/bayesian_approach_for_validation_of_runaway_electron_simulations_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120091
dc.identifier.urnURN:NBN:fi:aalto-202303152417
dc.language.isoenen
dc.publisherCambridge University Press
dc.relation.ispartofseriesJournal of Plasma Physicsen
dc.relation.ispartofseriesVolume 88, issue 6en
dc.rightsopenAccessen
dc.subject.keywordfusion plasmaen_US
dc.subject.keywordrunaway electronsen_US
dc.subject.keywordplasma simulationen_US
dc.titleBayesian approach for validation of runaway electron simulationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files