Data-reconciliation based fault-tolerant model predictive control for a biomass boiler

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSarkar, Palashen_US
dc.contributor.authorKortela, Jukkaen_US
dc.contributor.authorBoriouchkine, Alexandreen_US
dc.contributor.authorZattoni, Elenaen_US
dc.contributor.authorJämsä-Jounela, Sirkka Liisaen_US
dc.contributor.departmentDepartment of Biotechnology and Chemical Technologyen
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.date.accessioned2017-05-11T08:29:07Z
dc.date.available2017-05-11T08:29:07Z
dc.date.issued2017en_US
dc.description.abstractThis paper presents a novel, effective method to handle critical sensor faults affecting a control system devised to operate a biomass boiler. In particular, the proposed method consists of integrating a data reconciliation algorithm in a model predictive control loop, so as to annihilate the effects of faults occurring in the sensor of the flue gas oxygen concentration, by feeding the controller with the reconciled measurements. Indeed, the oxygen content in flue gas is a key variable in control of biomass boilers due its close connections with both combustion efficiency and polluting emissions. The main benefit of including the data reconciliation algorithm in the loop, as a fault tolerant component, with respect to applying standard fault tolerant methods, is that controller reconfiguration is not required anymore, since the original controller operates on the restored, reliable data. The integrated data reconciliation-model predictive control (MPC) strategy has been validated by running simulations on a specific type of biomass boiler - the KPA Unicon BioGrate boiler.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSarkar, P, Kortela, J, Boriouchkine, A, Zattoni, E & Jämsä-Jounela, S L 2017, 'Data-reconciliation based fault-tolerant model predictive control for a biomass boiler', Energies, vol. 10, no. 2, 194, pp. 1-14. https://doi.org/10.3390/en10020194en
dc.identifier.doi10.3390/en10020194en_US
dc.identifier.issn1996-1073
dc.identifier.otherPURE UUID: 757ba7b5-bc92-4a2a-8b6e-9015d550c224en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/757ba7b5-bc92-4a2a-8b6e-9015d550c224en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85014120255&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/12753342/energies_10_00194.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/25621
dc.identifier.urnURN:NBN:fi:aalto-201705114005
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesEnergiesen
dc.relation.ispartofseriesVolume 10, issue 2, pp. 1-14en
dc.rightsopenAccessen
dc.subject.keywordBioGrate boileren_US
dc.subject.keywordData reconciliationen_US
dc.subject.keywordFault-tolerant controlen_US
dc.subject.keywordModel predictive controlen_US
dc.titleData-reconciliation based fault-tolerant model predictive control for a biomass boileren
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files