Channel Covariance based Fingerprint Localization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Xinzeen_US
dc.contributor.authorAl-Tous, Hananen_US
dc.contributor.authorHajri, Salah Eddineen_US
dc.contributor.authorTirkkonen, Olaven_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorCommunications Theoryen
dc.contributor.organizationHuawei Technologies Co., Ltd.en_US
dc.date.accessioned2024-12-17T16:20:36Z
dc.date.available2024-12-17T16:20:36Z
dc.date.issued2024en_US
dc.description.abstractWe study performance and complexity of fingerprint localization based on 5G signaling. We concentrate on channel covariance and Channel Impulse Response (CIR) features, studying the effect of several factors on the localization performance such as the channel bandwidth, the number of Base Stations (BSs), the number of antennas at each BS, and the number of time samples. We consider Weighted K Nearest Neighbour (WKNN) as well as Deep Neural Network (DNN) localization. We adopt DNNs based on the Rel-18 3GPP Study Item AI/ML for positioning accuracy enhancement. Simulation results show that channel covariance features outperform CIR in terms of localization accuracy. Furthermore, covariance-based features are robust with respect to bandwidth reduction, allowing for more power-efficient implementations. However, a noticeable dependency on the number of BSs, BS antennas, and time samples, is found. Results also show that increasing sampling density is much more beneficial for improving performance with CIR-based features. Again this highlights the power saving virtues of using covariance based features as input. Finally, results show that WKNN performs better with covariance-based features, with noticeable degradation in performance, when CIR features are used insteaden
dc.description.versionPeer revieweden
dc.format.extent7
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, X, Al-Tous, H, Hajri, S E & Tirkkonen, O 2024, Channel Covariance based Fingerprint Localization. in 2024 IEEE 100th Vehicular Technology Conference, VTC 2024-Fall - Proceedings. IEEE Vehicular Technology Conference, IEEE, IEEE Vehicular Technology Conference, Washington, District of Columbia, United States, 07/10/2024. https://doi.org/10.1109/VTC2024-Fall63153.2024.10757910en
dc.identifier.doi10.1109/VTC2024-Fall63153.2024.10757910en_US
dc.identifier.isbn979-8-3315-1778-6
dc.identifier.issn2577-2465
dc.identifier.otherPURE UUID: 6e794c79-b915-4eab-abf9-76036ced6bc0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6e794c79-b915-4eab-abf9-76036ced6bc0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85213039654&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/153657984/vtc24fall.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132401
dc.identifier.urnURN:NBN:fi:aalto-202412177878
dc.language.isoenen
dc.relation.ispartofIEEE Vehicular Technology Conferenceen
dc.relation.ispartofseries2024 IEEE 100th Vehicular Technology Conference, VTC 2024-Fall - Proceedingsen
dc.relation.ispartofseriesIEEE Vehicular Technology Conferenceen
dc.rightsopenAccessen
dc.subject.keywordweighted K nearest neighboursen_US
dc.subject.keywordfingerprint localizationen_US
dc.subject.keywordchannel covarianceen_US
dc.subject.keywordChannel state informationen_US
dc.subject.keyworddeep neural networksen_US
dc.titleChannel Covariance based Fingerprint Localizationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files