Paper Machine Monitoring Using Self-Organizing Neural Networks
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
Helsinki University of Technology |
Diplomityö
Checking the digitized thesis and permission for publishing
Instructions for the author
Instructions for the author
Authors
Date
2000
Major/Subject
Sovellettu matematiikka
Mcode
Mat-2
Degree programme
Language
en
Pages
vi + 74
Series
Abstract
Työ perustuu VTT Tietotekniikan yhteistyökumppanin esittämään paperikoneiden monitorointiin liittyvään käytännön ongelmaan. Paperikone on monimutkainen prosessi monitoroida, ja prosessin monitoroinnin automatisointi on tarpeen. Automaattisessa paperikoneen monitoroinnissa kerättyjä mittauksia verrataan aikaisempiin mittauksiin ja tehdään päätelmiä koneen tilasta näihin vertailuihin perustuen. Työssä mitatut signaalit ovat paperikoneen telojen nopeus ja momentti sekä teho ja verkkojännite. Asiantuntijahaastatteluissa monitorointiongelma pelkistyi tarpeeksi havaita prosessisignaalien epänormaalit muutokset. Työssä kuvataan ja testataan kahta monitorointiprototyyppiä. Toinen prototyypeistä perustuu itseorganisoituvalle kartalle ja toinen adaptiiviselle resonanssiteorialle. Kummankin prototyypin syötteenä käytetään mitattujen signaalien aallokekertoimia. Prototyyppejä testataan kuudella mittausjakson aikana sattuneella epätavallisella ilmiöllä. Itseorganisoituvaa karttaa käyttävä prototyyppi opetetaan normaalidatalla ja havaittujen prosessitilojen kvantisointivirhettä käytetään epänormaaliuden indikaattorina. Kvantisointivirhettä voidaan käyttää joko pehmeänä mittana tai kynnystämällä luokitella tilat normaaleihin ja epänormaaleihin. Itseorganisoituvaa karttaa käyttävä lähestymistapa antaa lupaavia tuloksia, sillä useimmat testi-ilmiöt havaitaan kvantisointivirheen nousuna. Adaptiiviseen resonanssiteoriaan perustuvaa prototyyppiä ei tarvitse opettaa, vaan prosessitilat luokitellaan sitä mukaa, kun ne havaitaan. Jos prototyyppi on tavannut samankaltaisen tilan aiemmin, uusi prosessitila luokitellaan aiempaa tilaa vastaavaan luokkaan. Muussa tapauksessa luodaan uusi luokka. Prototyyppi osoittautui liian herkäksi prosessin häiriöille ja kohinalle, eikä testi-ilmiöitä havaittu kunnolla. Ilmiöitä luokiteltiin useisiin luokkiin yhden sijaan tai ilmiön alku havaittiin epäluotettavasti. Prototyyppien monitorointikyvyn lisäksi vertaillaan niiden käytettävyyttä ja automatisoinnin helppoutta. Vertailuun perustuen esitetään työssä implementaatioehdotus itseorganisoituvalle kartalle perustuvasta monitorointijärjestelmästä. Ehdotuksessa käytetään prosessin arkistotietokantaa kartan off-line opettamiseen ja reaaliaikatietokantaa prosessin monitorointiin. Lisäksi käydään läpi monitorointijärjestelmän vaatimuksia, rajoituksia ja joitakin ajatuksia järjestelmän jatkokehittämistä silmällä pitäen.Description
Supervisor
Ehtamo, HarriThesis advisor
Kiviniemi, JukkaKeywords
paper machine, paperikone, monitoring, monitorointi, self-organizing map, itseorganisoituva kartta, adaptive resonance theory, adaptiivinen resonanssiteoria, wavelets, aallokkeet