Diffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenic

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKalliomäki, Taina
dc.contributor.authorWilson, Benjamin P.
dc.contributor.authorAromaa, Jari
dc.contributor.authorLundström, Mari
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineering
dc.contributor.departmentHydrometallurgy and Corrosion
dc.date.accessioned2019-03-11T15:23:07Z
dc.date.available2019-03-11T15:23:07Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2021-02-18
dc.date.issued2019-04-01
dc.description.abstractDiffusion and convection are the main modes of mass transport that occur during copper electrorefining. Diffusion determines the rate of copper transfer across the diffusion layer, which in turn, affects the dissolution of the anode and deposition on the cathode. The diffusion coefficient of cupric ion (D Cu(II) ) is a typical property that can be defined from the limiting current density (j lim ) values. In this work, the limiting current densities were measured for 24 different synthetic copper electrolytes over a temperature range of 50–70 °C using a rotating disc electrode (RDE). From this data, a model for j lim and the corresponding models for D Cu(II) were constructed using Levich (Model L), Koutecký-Levich (Model K) and mixed-control Newman equations (Model M). The models for j lim and D Cu(II) were designed, refined and analyzed using the modeling and design tool MODDE, with the temperature, copper, nickel, arsenic and sulfuric acid concentrations as variables. Results from this research show for the first time that an increase in arsenic concentration has a reciprocal effect on the D Cu(II) under copper electrorefining conditions. Furthermore, the models were validated with 11 industrial electrorefining electrolyteswith known compositions. Model L (D Cu(II) based on Levich equation) was shown to provide the highest correlation with the industrial solutions when compared to the other models (Model K and M) considered and previously published diffusion coefficient models. Overall, this work provides an explanation for the previously observed data variances in the literature, investigates for the first time the combined effect of parameters on D Cu(II) value in industrial copper electrolysis and clarifies the effect of arsenic on the D Cu(II) of copper electrorefining electrolytes.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent381-389
dc.format.mimetypeapplication/pdf
dc.identifier.citationKalliomäki , T , Wilson , B P , Aromaa , J & Lundström , M 2019 , ' Diffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenic ' , Minerals Engineering , vol. 134 , pp. 381-389 . https://doi.org/10.1016/j.mineng.2019.02.027en
dc.identifier.doi10.1016/j.mineng.2019.02.027
dc.identifier.issn0892-6875
dc.identifier.issn1872-9444
dc.identifier.otherPURE UUID: a98dd74d-032d-4230-8046-f010ec10be49
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/a98dd74d-032d-4230-8046-f010ec10be49
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85061651924&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/32329412/CHEM_Kalliom_ki_et_al_Diffusion_Coefficient_Of_Cupric_2019_Minerals_Engineering.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/37078
dc.identifier.urnURN:NBN:fi:aalto-201903112220
dc.language.isoenen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofseriesMinerals Engineeringen
dc.relation.ispartofseriesVolume 134en
dc.rightsopenAccessen
dc.subject.keywordArsenic impurities
dc.subject.keywordCopper electrorefining electrolyte
dc.subject.keywordCupric ion
dc.subject.keywordDiffusion coefficient
dc.titleDiffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenicen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files