Investigation of the dependence of pe,ped on ne,sep in JET H-Mode plasmas using integrated JETTO-MISHKA-FRANTIC simulations

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2023-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

Nuclear Materials and Energy, Volume 34

Abstract

Experimentally, it has been observed in high-confinement (H-Mode) plasmas with Edge Localised Modes (ELMs) on JET that the pressure pedestal (pe,ped) is degraded by approximately a factor of two when there is a change in electron separatrix density, ne,sep, from 1−4×1019m−3. Previous work using the pedestal stability code EUROPED, has been able to predict the degradation of pe,ped but only for ne,sep≤1.5×1019m−3. In this work, we apply a coupled code JETTO-MISHKA-FRANTIC, to self-consistently predict the transport in the pedestal region and neutral source with varying separatrix conditions. The code feeds back on the transport in the pedestal region to achieve profiles that are marginally stable to ideal MHD modes (continuous ELM model in JETTO). When accounting for the change in electron separatrix temperature (Te,sep), ion separatrix temperature (Ti,sep) and the poloidally integrated neutral flux crossing the separatrix (Γsep,neut) as it changes with ne,sep (according to a scan in ne,sep in the edge code EDGE2D-EIRENE), no degradation in pe,ped was observed in JETTO-MISHKA-FRANTIC in contrast to experiment. Instead, an increase in pe,ped with ne,sep was observed which is driven by an increasing density pedestal (ne,ped). Within the presented JETTO-MISHKA-FRANTIC simulations, changing the pedestal width by a factor of two and a half in normalised poloidal flux (ψn) resulted in an approximately 40% degradation in pe,ped for ne,sep=1−3×1019m−3. This change in pedestal width was not supported by experimental data. A scan in the ratio of particle and energy transport in the pedestal (D/χ) was found to have a negligible effect on pe,ped. Qualitative agreement between JETTO-MISHKA-FRANTIC with EUROPED was found when the input density profiles are identical.

Description

Funding Information: This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. (Please mind the addendum 2019–2020) | openaire: EC/HE/101052200/EU//EUROfusion

Keywords

Core edge integration, EPED, JINTRAC, Pedestal stability, Pressure pedestal

Other note

Citation

Simpson, J, Moulton, D, Giroud, C, Groth, M, Horvath, L, Casson, F J, Kochl, F, Frassinetti, L, Corrigan, G, Saarelma, S, Garzotti, L, Gahle, D S, Chankin, A & JET Contributors 2023, ' Investigation of the dependence of p e,ped on n e,sep in JET H-Mode plasmas using integrated JETTO-MISHKA-FRANTIC simulations ', Nuclear Materials and Energy, vol. 34, 101365 . https://doi.org/10.1016/j.nme.2023.101365