Aging mechanisms of NMC811/Si-Graphite Li-ion batteries

dc.contributorAalto Universityen
dc.contributor.authorLaakso, Ekaterinaen_US
dc.contributor.authorEfimova, Sofyaen_US
dc.contributor.authorColalongo, Mattiaen_US
dc.contributor.authorKauranen, Perttien_US
dc.contributor.authorLahtinen, Katjaen_US
dc.contributor.authorNapolitano, Emilioen_US
dc.contributor.authorRuiz, Vanesaen_US
dc.contributor.authorMoškon, Jozéen_US
dc.contributor.authorGaberšček, Miranen_US
dc.contributor.authorPark, Juyeonen_US
dc.contributor.authorSeitz, Steffenen_US
dc.contributor.authorKallio, Tanjaen_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorElectrochemical Energy Conversionen
dc.contributor.organizationDepartment of Chemistry and Materials Scienceen_US
dc.contributor.organizationTofwerk AGen_US
dc.contributor.organizationEuropean Commission Joint Research Centreen_US
dc.contributor.organizationNational Institute of Chemistry - Sloveniaen_US
dc.contributor.organizationNational Physical Laboratory (NPL)en_US
dc.contributor.organizationPhysikalisch-Technische Bundesanstalten_US
dc.descriptionPublisher Copyright: © 2024 The Authors
dc.description.abstractElectrode degradation processes at various Li-ion batteries’ state-of-health (SoH 100 %, 80 %, 50 %, and 30 %) and cycling temperatures (5 °C, 23 °C, and 45 °C) were investigated. For this purpose, the standard format of Li-ion cylindrical 18,650 batteries with Si-Graphite negative and LiNi0·8Co0·1Mn0·1O2 (NMC811) positive electrodes were cycled with registering battery parameters and the electrochemical impedance spectrum were recorded after every 200 cycles. Once reaching their end-of-life, electrodes from cycled batteries were subjected to post-mortem analysis. NMC811 positive electrode was observed to crack during the charge and discharge processes, suffered by irreversible phase transition, transition metal dissolution, cathode electrolyte interphase growth, and cation mixing. The Si-Graphite negative electrode material was also affected by crack formation, layer exfoliation, solid electrolyte interphase (SEI) recompositing, Li dendrite growth, transition metal contamination, and Si dissolution. Degradation of components leads to an increase of the contact resistance, Li+ diffusion limitations, reduction of active materials participating in Li-ion storage and, as a result, capacity fade that finally rendered the battery utilization unfeasible. Degradation processes can be detected by capacity fade and impedance growth of the full battery. High temperature accelerates electrode degradation processes when low temperature leads to SEI and Li dendrite growth.en
dc.description.versionPeer revieweden
dc.identifier.citationLaakso, E, Efimova, S, Colalongo, M, Kauranen, P, Lahtinen, K, Napolitano, E, Ruiz, V, Moškon, J, Gaberšček, M, Park, J, Seitz, S & Kallio, T 2024, ' Aging mechanisms of NMC811/Si-Graphite Li-ion batteries ', Journal of Power Sources, vol. 599, 234159 .
dc.identifier.otherPURE UUID: 7618869f-a864-4426-8f52-d4fb0e52748een_US
dc.identifier.otherPURE ITEMURL:
dc.identifier.otherPURE LINK:
dc.identifier.otherPURE FILEURL:
dc.publisherElsevier Science B.V.
dc.relation.ispartofseriesJournal of Power Sources
dc.relation.ispartofseriesVolume 599
dc.subject.keywordElectrochemical impedance spectroscopyen_US
dc.subject.keywordLithium-ion batteryen_US
dc.subject.keywordPost-mortem studyen_US
dc.titleAging mechanisms of NMC811/Si-Graphite Li-ion batteriesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi