Improving robustness to corruptions with multiplicative weight perturbations
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Trinh, Trung | |
dc.contributor.author | Heinonen, Markus | |
dc.contributor.author | Acerbi, Luigi | |
dc.contributor.author | Kaski, Samuel | |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Globerson, A. | |
dc.contributor.editor | Mackey, L. | |
dc.contributor.editor | Belgrave, D. | |
dc.contributor.editor | Fan, A. | |
dc.contributor.editor | Paquet, U. | |
dc.contributor.editor | Tomczak, J. | |
dc.contributor.editor | Zhang, C. | |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Professorship Lähdesmäki Harri | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.groupauthor | Finnish Center for Artificial Intelligence, FCAI | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.date.accessioned | 2025-03-26T07:41:22Z | |
dc.date.available | 2025-03-26T07:41:22Z | |
dc.date.issued | 2025 | |
dc.description | | openaire: EC/H2020/951847/EU//ELISE | |
dc.description.abstract | Deep neural networks (DNNs) excel on clean images but struggle with corrupted ones. Incorporating specific corruptions into the data augmentation pipeline can improve robustness to those corruptions but may harm performance on clean images and other types of distortion. In this paper, we introduce an alternative approach that improves the robustness of DNNs to a wide range of corruptions without compromising accuracy on clean images. We first demonstrate that input perturbations can be mimicked by multiplicative perturbations in the weight space. Leveraging this, we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training method that optimizes DNNs under random multiplicative weight perturbations. We also examine the recently proposed Adaptive Sharpness-Aware Minimization (ASAM) and show that it optimizes DNNs under adversarial multiplicative weight perturbations. Experiments on image classification datasets (CIFAR-10/100, TinyImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16, ViT-B/16) show that DAMP enhances model generalization performance in the presence of corruptions across different settings. Notably, DAMP is able to train a ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is comparable to ResNet50 without extensive data augmentations. | en |
dc.description.version | Peer reviewed | en |
dc.identifier.citation | Trinh, T, Heinonen, M, Acerbi, L & Kaski, S 2025, Improving robustness to corruptions with multiplicative weight perturbations. in A Globerson, L Mackey, D Belgrave, A Fan, U Paquet, J Tomczak & C Zhang (eds), Advances in Neural Information Processing Systems 37 (NeurIPS 2024). Advances in Neural Information Processing Systems, vol. 37, Curran Associates Inc., Conference on Neural Information Processing Systems, Vancouver, Canada, 10/12/2024. < https://arxiv.org/abs/2406.16540 > | en |
dc.identifier.isbn | 9798331314385 | |
dc.identifier.issn | 1049-5258 | |
dc.identifier.other | PURE UUID: 3679cf60-e102-4403-8377-f5c72a5ec926 | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/3679cf60-e102-4403-8377-f5c72a5ec926 | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=105000533911&partnerID=8YFLogxK | |
dc.identifier.other | PURE LINK: https://arxiv.org/abs/2406.16540 | |
dc.identifier.other | PURE LINK: https://proceedings.neurips.cc/paper_files/paper/2024/hash/3e9412a9c1d93810ef3ef7825115016b-Abstract-Conference.html | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/134748 | |
dc.identifier.urn | URN:NBN:fi:aalto-202503262990 | |
dc.language.iso | en | en |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/951847/EU//ELISE | |
dc.relation.ispartof | Conference on Neural Information Processing Systems | en |
dc.relation.ispartofseries | Advances in Neural Information Processing Systems 37 (NeurIPS 2024) | en |
dc.relation.ispartofseries | Advances in Neural Information Processing Systems ; Volume 37 | en |
dc.rights | openAccess | en |
dc.title | Improving robustness to corruptions with multiplicative weight perturbations | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |