Improving robustness to corruptions with multiplicative weight perturbations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTrinh, Trung
dc.contributor.authorHeinonen, Markus
dc.contributor.authorAcerbi, Luigi
dc.contributor.authorKaski, Samuel
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorGloberson, A.
dc.contributor.editorMackey, L.
dc.contributor.editorBelgrave, D.
dc.contributor.editorFan, A.
dc.contributor.editorPaquet, U.
dc.contributor.editorTomczak, J.
dc.contributor.editorZhang, C.
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.date.accessioned2025-03-26T07:41:22Z
dc.date.available2025-03-26T07:41:22Z
dc.date.issued2025
dc.description| openaire: EC/H2020/951847/EU//ELISE
dc.description.abstractDeep neural networks (DNNs) excel on clean images but struggle with corrupted ones. Incorporating specific corruptions into the data augmentation pipeline can improve robustness to those corruptions but may harm performance on clean images and other types of distortion. In this paper, we introduce an alternative approach that improves the robustness of DNNs to a wide range of corruptions without compromising accuracy on clean images. We first demonstrate that input perturbations can be mimicked by multiplicative perturbations in the weight space. Leveraging this, we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training method that optimizes DNNs under random multiplicative weight perturbations. We also examine the recently proposed Adaptive Sharpness-Aware Minimization (ASAM) and show that it optimizes DNNs under adversarial multiplicative weight perturbations. Experiments on image classification datasets (CIFAR-10/100, TinyImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16, ViT-B/16) show that DAMP enhances model generalization performance in the presence of corruptions across different settings. Notably, DAMP is able to train a ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is comparable to ResNet50 without extensive data augmentations.en
dc.description.versionPeer revieweden
dc.identifier.citationTrinh, T, Heinonen, M, Acerbi, L & Kaski, S 2025, Improving robustness to corruptions with multiplicative weight perturbations. in A Globerson, L Mackey, D Belgrave, A Fan, U Paquet, J Tomczak & C Zhang (eds), Advances in Neural Information Processing Systems 37 (NeurIPS 2024). Advances in Neural Information Processing Systems, vol. 37, Curran Associates Inc., Conference on Neural Information Processing Systems, Vancouver, Canada, 10/12/2024. < https://arxiv.org/abs/2406.16540 >en
dc.identifier.isbn9798331314385
dc.identifier.issn1049-5258
dc.identifier.otherPURE UUID: 3679cf60-e102-4403-8377-f5c72a5ec926
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3679cf60-e102-4403-8377-f5c72a5ec926
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=105000533911&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2406.16540
dc.identifier.otherPURE LINK: https://proceedings.neurips.cc/paper_files/paper/2024/hash/3e9412a9c1d93810ef3ef7825115016b-Abstract-Conference.html
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/134748
dc.identifier.urnURN:NBN:fi:aalto-202503262990
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/951847/EU//ELISE
dc.relation.ispartofConference on Neural Information Processing Systemsen
dc.relation.ispartofseriesAdvances in Neural Information Processing Systems 37 (NeurIPS 2024)en
dc.relation.ispartofseriesAdvances in Neural Information Processing Systems ; Volume 37en
dc.rightsopenAccessen
dc.titleImproving robustness to corruptions with multiplicative weight perturbationsen
dc.typeA4 Artikkeli konferenssijulkaisussafi

Files