Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMöttönen, Nea B.en_US
dc.contributor.authorKarttunen, Antti J.en_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorInorganic Materials Modellingen
dc.date.accessioned2023-03-07T13:30:10Z
dc.date.available2023-03-07T13:30:10Z
dc.date.issued2023-01-22en_US
dc.descriptionFunding Information: We acknowledge funding from Business Finland (Grant No. 3767/31/2019) and Academy of Finland’s Flagship Programme under Projects No. 318890 and 318891 (Competence Center for Materials Bioeconomy, FinnCERES. Publisher Copyright: © 2023 by the authors.
dc.description.abstractThe use of biocomposites is increasing due to their recyclability, biodegradability, and decreased CO2 emission levels compared to pure polyolefin plastics. Furthermore, suitably engineered biocomposites can provide, for example, superior mechanical properties for various applications. However, the correlations between the atomic-level structure and mechanical properties of most biocomposites are not yet understood. Atomistic molecular dynamics (MD) simulations provide a powerful way to examine the atomic-level structure and mechanical properties of biocomposites. In this study, polypropylene–cellulose biocomposites were examined using maleic anhydride grafted polypropylene (PP-MAH) as a coupling agent. The biocomposites were studied with the Materials Studio program package and COMPASSII force field, using the constant strain approach for mechanical properties. The results were comparable to the experimental literature values, showing that that MD can be applied to study the atomic-level structure–property correlations of polypropylene–cellulose biocomposites.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMöttönen, N B & Karttunen, A J 2023, ' Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method ', Molecules, vol. 28, no. 3, 1115 . https://doi.org/10.3390/molecules28031115en
dc.identifier.doi10.3390/molecules28031115en_US
dc.identifier.issn1420-3049
dc.identifier.otherPURE UUID: 9f411161-329d-40ee-8650-10f12b550e76en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9f411161-329d-40ee-8650-10f12b550e76en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85147893879&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/102177929/CHEM_Mottonen_and_Karttunen_Mechanical_Properties_2023_Molecules.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/120004
dc.identifier.urnURN:NBN:fi:aalto-202303072332
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMoleculesen
dc.relation.ispartofseriesVolume 28, issue 3en
dc.rightsopenAccessen
dc.subject.keywordbiocompositesen_US
dc.subject.keywordcelluloseen_US
dc.subject.keywordmaleic anhydrideen_US
dc.subject.keywordmechanical propertiesen_US
dc.subject.keywordmolecular dynamicsen_US
dc.subject.keywordpolypropyleneen_US
dc.titleMechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Methoden
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files