Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorEom, Young Hoen_US
dc.contributor.authorJo, Hang Hyunen_US
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationUniversité Fédérale Toulouse Midi-Pyrénéesen_US
dc.date.accessioned2017-03-23T12:49:41Z
dc.date.available2017-03-23T12:49:41Z
dc.date.issued2015-05-11en_US
dc.description.abstractMany complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationEom, Y H & Jo, H H 2015, 'Tail-scope : Using friends to estimate heavy tails of degree distributions in large-scale complex networks', Scientific Reports, vol. 5, 09752, pp. 1-9. https://doi.org/10.1038/srep09752en
dc.identifier.doi10.1038/srep09752en_US
dc.identifier.issn2045-2322
dc.identifier.otherPURE UUID: e3da3577-8ce2-469a-b2d8-b45a1156a4d9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e3da3577-8ce2-469a-b2d8-b45a1156a4d9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84929152983&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/12913009/srep09752.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/24955
dc.identifier.urnURN:NBN:fi:aalto-201703233198
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reportsen
dc.relation.ispartofseriesVolume 5, pp. 1-9en
dc.rightsopenAccessen
dc.titleTail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files