Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-09-22
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
ACS Nano
Abstract
Cellulose nanopaper is a strong lightweight material made from renewable resources with a wide range of potential applications, from membranes to electronic displays. Most studies on nanopaper target high mechanical strength, which compromises ductility and toughness. Herein, we demonstrate the fabrication of highly ductile and tough cellulose nanopaper via mechanical fibrillation of hemicellulose-rich wood fibers and dispersion of the obtained cellulose nanofibrils (CNFs) in an ionic liquid (IL)–water mixture. This treatment allows hemicellulose swelling, which leads to dissociation of CNF bundles into highly disordered long flexible fibrils and the formation of a nanonetwork as supported by cryogenic transmission electron microscopy (cryo-TEM) imaging. Rheology of the suspensions shows a 300-fold increase in storage and loss moduli of CNF–IL–water suspensions, compared to their CNF–water counterparts. The nanopaper prepared by removing the IL–water shows a combination of large elongation (up to 35%), high strength (260 MPa), and toughness as high as 51 MJ/m3, because of efficient interfibrillar slippage and energy dissipation in the highly disordered isotropic structure. This work provides a nanostructure-engineered strategy of making ductile and tough cellulose nanopaper.Description
Keywords
nanocellulose, ioniq liquid, hemicellulose, viscoelastic properties, ductile, mechanical properties
Other note
Citation
Chen, F, Xiang, W, Sawada, D, Bai, L, Hummel, M, Sixta, H & Budtova, T 2020, ' Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength ', ACS Nano, vol. 14, no. 9, pp. 11150-11159 . https://doi.org/10.1021/acsnano.0c02302