Assessing the prediction uncertainty in a route optimization model for autonomous maritime logistics
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
International Transactions in Operational Research
Abstract
Unmanned operations and automation in modern industry create complex everyday problems, which require algorithmic thinking and creativity. Development of risk assessment methods is critical for the future of this business segment. To provide decision support for the management of an autonomous emission control boat, we begin by proposing a k-Nearest-Neighbours (k-NN)-based trajectory prediction method. This is employed in a bi-objective routing problem of finding a Hamiltonian circuit in a dynamic network defined by predicted locations of ships over time. The objectives are maximizing the number of measurement tasks to be done and minimizing the corresponding total travel distance of the emission control boat. To evaluate the impact of trajectory prediction uncertainty on Pareto-optimal itineraries, we propose a risk measure in a mean-risk framework. The risk is defined based on an expected shortfall when implementation of an efficient itinerary under the predicted trajectories needs rescheduling based on realized trajectories. The risk measure helps the decision maker to evaluate choice alternatives among efficient itineraries under predicted trajectories and to make a balanced risk-adjusted decision. We show how historical data is employed in integer linear programming for the estimation of such risk measure. Empirical results demonstrate such estimation.Description
doi: 10.1111/itor.12882
Keywords
maritime autonomous transport, mean-risk analysis, nearest neighbour, route prediction, itinerary planning, integer programming
Other note
Citation
Maskooki, A, Virjonen, P & Kallio, M 2021, ' Assessing the prediction uncertainty in a route optimization model for autonomous maritime logistics ', International Transactions in Operational Research, vol. 28, no. 4, pp. 1765-1786 . https://doi.org/10.1111/itor.12882