Lossless Dimension Reduction for Integer Least Squares with Application to Sphere Decoding

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNeinavaie, Mohammaden_US
dc.contributor.authorDerakhtian, Mostafaen_US
dc.contributor.authorVorobyov, Sergiy A.en_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.contributor.organizationShiraz Universityen_US
dc.date.accessioned2021-01-25T10:10:01Z
dc.date.available2021-01-25T10:10:01Z
dc.date.issued2020en_US
dc.description.abstractMinimum achievable complexity (MAC) for a maximum likelihood (ML) performance-Achieving detection algorithm is derived. Using the derived MAC, we prove that the conventional sphere decoding (SD) algorithms suffer from an inherent weakness at low SNRs. To find a solution for the low SNR deficiency, we analyze the effect of zero-forcing (ZF) and minimum mean square error (MMSE) linearly detected symbols on the MAC and demonstrate that although they both improve the SD algorithm in terms of the computational complexity, the MMSE linearly detected point has a vital difference at low SNRs. By exploiting the information provided by the MMSE of linear method, we prove the existence of a lossless dimension reduction which can be interpreted as the feasibility of a detection method which is capable of detecting the ML symbol without visiting any nodes at low and high SNRs. We also propose a lossless dimension reduction-Aided detection method which achieves the promised complexity bounds marginally and reduces the overall computational complexity significantly, while obtaining the ML performance. The theoretical analysis is corroborated with numerical simulations.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNeinavaie, M, Derakhtian, M & Vorobyov, S A 2020, 'Lossless Dimension Reduction for Integer Least Squares with Application to Sphere Decoding', IEEE Transactions on Signal Processing, vol. 68, 9258407, pp. 6547-6561. https://doi.org/10.1109/TSP.2020.3037708en
dc.identifier.doi10.1109/TSP.2020.3037708en_US
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.otherPURE UUID: 36966443-792e-4b92-a251-68a6868e5d09en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/36966443-792e-4b92-a251-68a6868e5d09en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85097847798&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/55063687/Lossless_size_reduction.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/102117
dc.identifier.urnURN:NBN:fi:aalto-202101251427
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Signal Processingen
dc.relation.ispartofseriesVolume 68, pp. 6547-6561en
dc.rightsopenAccessen
dc.subject.keywordComputational complexityen_US
dc.subject.keyworddimension reductionen_US
dc.subject.keywordinteger least squaresen_US
dc.subject.keywordmaximum likelihooden_US
dc.subject.keywordMIMO detectionen_US
dc.subject.keywordminimum mean square erroren_US
dc.subject.keywordsphere decodingen_US
dc.subject.keywordtree-search methodsen_US
dc.titleLossless Dimension Reduction for Integer Least Squares with Application to Sphere Decodingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files