Lossless Dimension Reduction for Integer Least Squares with Application to Sphere Decoding
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
15
Series
IEEE Transactions on Signal Processing, Volume 68, pp. 6547-6561
Abstract
Minimum achievable complexity (MAC) for a maximum likelihood (ML) performance-Achieving detection algorithm is derived. Using the derived MAC, we prove that the conventional sphere decoding (SD) algorithms suffer from an inherent weakness at low SNRs. To find a solution for the low SNR deficiency, we analyze the effect of zero-forcing (ZF) and minimum mean square error (MMSE) linearly detected symbols on the MAC and demonstrate that although they both improve the SD algorithm in terms of the computational complexity, the MMSE linearly detected point has a vital difference at low SNRs. By exploiting the information provided by the MMSE of linear method, we prove the existence of a lossless dimension reduction which can be interpreted as the feasibility of a detection method which is capable of detecting the ML symbol without visiting any nodes at low and high SNRs. We also propose a lossless dimension reduction-Aided detection method which achieves the promised complexity bounds marginally and reduces the overall computational complexity significantly, while obtaining the ML performance. The theoretical analysis is corroborated with numerical simulations.Description
Other note
Citation
Neinavaie, M, Derakhtian, M & Vorobyov, S A 2020, 'Lossless Dimension Reduction for Integer Least Squares with Application to Sphere Decoding', IEEE Transactions on Signal Processing, vol. 68, 9258407, pp. 6547-6561. https://doi.org/10.1109/TSP.2020.3037708